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Executive summary 
 
 
Since modelling of DER units are based on sequential Monte Carlo method in this 
report, load flow calculation has to be performed for each considered point of time in 
the examined period (namely 8760 hourly average values) — this poses an 
extremely high requirement on computational time of the load flow algorithm. In order 
to reduce the amount of time needed for stochastic examination, a load flow 
estimation algorithm (LFEA) based on forward / backward sweep approach is 
introduced in chapter 2 of this report. The LFEA method aims to exploit the pan-radial 
feature of distribution grids by replacing large matrix calculations with sequential 
iterations, which proves to be a very effective strategy in terms of time-saving. 
Computational accuracy of the LFEA method is also examined and found to be 
acceptable considering initial data availability and measurement error of distribution 
grids. 
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Abbreviations 
 
NtL Method Node-to-Link Load Flow Method 
NR Method Newton-Raphson Load Flow Method 
CI Method Current Iteration Load Flow Method 
AM Method Admittance Matrix Load Flow Method 
l - n Line to Neutral 
l - l Line to Line 
PQ Constant Active Power and Reactive Power Type 
PV Constant Active Power and Voltage Magnitude Type 
P Active Power 
Q Reactive Power 
U Voltage Magnitude 
α Voltage Angle 
d- Link Variable Difference (Outgoing Minus Incoming) 
-i Incoming Link Variable 
-o Outgoing Link Variable 
T Link-to-Node Correlation / Deduction Matrix 
TD Decoupled Link-to-Node Correlation / Deduction Matrix 
M Evolution Matrix 
J Jacobian Matrix 
L Loop Index Matrix 
VD Node-to-Difference Voltage Deduction Matrix 
xL Combined Link Power Vector 
xN Combined Node Power Vector 
Nnd Number of Nodes in a Grid 
Nlk Number of Links in a Grid (Both Real and Artificial Ones) 
Nmh Number of Loops in a Grid 
Nsl Number of Additional Slacks (Total Minus One) in a Grid 
Npv Number of PV Nodes in a Grid 
Nuv Number of Unknown Variables in a NtL Load Flow Formulation 
OPF Optimal Power Flow 
QP Quadratic Programming 
LP Linear Programming 
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Chapter 1 Load Flow Estimation Algorithm for 
Evaluation of DER Impact 

 
In order to determine benefits of Microgrid operation, in a first step optimum size and 
location of DG units has to be determined; it was necessary to develop a load flow 
estimation algorithm (LFEA) for fast evaluation of DG impact. Existing network 
simulation programs turned out to be not suitable for this first evalulation due to high 
calculation times and big database sizes caused by the stochastic simulation 
approach. With a number of approximations assumed for calculating certain network 
parameters, an iterative load flow algorithm was developed to ensure relatively 
reasonable estimation outputs as well as minimum calculation efforts required. 

2.1 Load Flow Estimation Algorithm for Radial Feeders 
 
A radial test network is given in Figure 1-1 to illustrate the basic working mechanism 
of LFEA. The network primarily resembles a simplified 20-kV distribution feeder 
supplied from an 110kV grid, and the radial feeder consists of four major customers 
of different types (household, industrial, business, agricultural, etc.). In the mean 
time, potential Photovoltaic (PV) and Wind Turbine (WT) connections are considered 
at each customer’s location. 
 

 
Figure 1-1 Radial Test Network 
 
In order to describe the feeder in a relatively compact manner, the 20kV network can 
be seen as the serial connection of four LNL (Line-Node-Load) elements. An LNL 
element can be defined as the combination of a distribution line, a connection node, 
and a synthetic load (consisting of a customer load and one or more potential DG 
units connected at the same node). It is explained in Figure 1-2: 
 

 
Figure 1-2 Illustration of an LNL Element 
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2.1.1 Description of Basic Formulas for LF Estimation 
 
The network variables of an LNL element can be categorized into terminal variables 
(input and output pairs) and differential ones (those related to the behavior of the 
distribution line). They can be respectively described by following equations: 
 
1. Description of Terminal Variables: 
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 Equation 1-1 

2. Description of Differential Variables 
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 Equation 1-2 

It should be noted that the equations above have not included network parameters of 
distribution lines that are necessary for load flow estimation. As an addition, the 
typical model of a 20kV distribution line is given in Figure 1-3 [44]: 
 

 
Figure 1-3 Equivalent Circuit of a Distribution Line 
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It can be seen from Figure 1-3 that shunt conductance (G) is generally not 
considered for medium or low voltage cables and overhead lines since corona 
discharges are almost negligible in distribution networks. Therefore the essential 
parameters of a distribution line include the serial resistance R, the serial inductive 
reactance XL, the shunt capacitive reactance XC, and the thermal current rating IN.  
 
With knowledge of these line parameters and customer load information, it is then 
possible to estimate the load flow behavior of a radial feeder by utilizing the following 
two sets of approximation formulas: 
 
1. Power Estimation Formulas [45] [46]: 
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 Equation 1-3 

2. Voltage Estimation Formulas [44] [46]: 
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 Equation 1-4 

Obviously all these equations above aim to estimate differential variables from 
terminal ones—considering the fact that a terminal variable can also be calculated 
from its counterpart and the corresponding differential variable (e.g. Pi = Po + dP), it 
becomes possible to use iterative calculations to reduce estimation errors.  
 
In the mean time, it can be seen from both sets of equations that estimated (or 
assumed) voltage values are needed for calculating power variables, while estimated 
power values are also necessary for obtaining voltage variables. Thus iterative 
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calculations can also be applied between voltage and power variables to reduce 
estimation errors of both. 
 
These two types of iterations, together with the approximation formulas introduced 
beforehand, are the basic foundations of the load flow estimation algorithm (LFEA). 
They are frequently utilized not only for the radial case, but also for meshed and even 
more complicated situations. Figure 1-4 gives a rough picture of the basic working 
mechanism of them: 
 

 
Figure 1-4 Two Types of Iterations Used in LFEA 
 
For any approximation approach, it is always important to know the general accuracy 
of estimation. In order to evaluate the validity of Equation 1-3 and Equation 1-4, the 
following Table 1-1 is given showing the difference between calculated (using PSS 
SINCAL) and estimated (using Equation 1-3 and Equation 1-4) dP, dQ, dU, and dα of 
radial test network under a WT-penetrated scenario (simulated under rated condition 
with a 5 MW wind turbine connected at node T1). In order to minimize disturbance, 
zero error is assumed for all the input variables of approximation equations, which 
means Table 1-1 shows the ideal output of estimation algorithm. 
 
dP in MW U in kV LNL1 LNL2 
dQ in MVar α in º calculated estimated calculated estimated 
cal_dP est_dP 1,2686E-04 1,2737E-04 3,6775E-03 3,6775E-03 
cal_dQ est_dQ -6,5976E-02 -6,5976E-02 -3,8317E-03 -3,8317E-03 
cal_dU cal_dU 5,4973E-03 5,4973E-03 1,4682E-02 1,4682E-02 
cal_dα cal_dα 5,9086E-03 5,9086E-03 5,9669E-03 5,9669E-03 
   abs_error rel_error % abs_error rel_error % 
abs_dP rel_dP 5,0304E-07 3,9652E-01 3,4480E-10 9,3759E-06 
abs_dQ rel_dQ 3,4661E-07 -5,2535E-04 1,6971E-10 -4,4290E-06 
abs_dU rel_dU -2,8933E-08 -5,2631E-04 -1,2722E-09 -8,6655E-06 
abs_dα rel_dα 2,1362E-10 3,6153E-06 1,6050E-09 2,6898E-05 
 
dP in MW U in kV LNL3 LNL4 
dQ in MVar α in º calculated estimated calculated estimated 
cal_dP est_dP 3,1582E-03 3,1582E-03 9,3208E-03 9,3207E-03 
cal_dQ est_dQ -7,9213E-03 -7,9213E-03 1,0109E-02 1,0108E-02 
cal_dU cal_dU 1,8780E-02 1,8780E-02 7,3253E-02 7,3252E-02 
cal_dα cal_dα 1,6820E-03 1,6820E-03 1,3462E-01 1,3462E-01 
   abs_error rel_error % abs_error rel_error % 
abs_dP rel_dP 3,8138E-09 1,2076E-04 -5,7866E-09 -6,2083E-05 
abs_dQ rel_dQ 1,3895E-09 -1,7542E-05 -1,3217E-06 -1,3074E-02 
abs_dU rel_dU -3,8583E-09 -2,0544E-05 -1,2523E-07 -1,7095E-04 
abs_dα rel_dα 7,4624E-10 4,4368E-05 7,8936E-07 5,8635E-04 
 
Table 1-1 Estimation Accuracy Examined by Test Radial Network 

Terminal 
Variables 

Differential 
Variables 

Power 
Variables 

Voltage 
Variables 
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Table 1-1 shows that estimation accuracy varies from line to line, but it generally 
deteriorates when the length of a cable or overhead line becomes too large (as in 
case of LNL1 and LNL 4). Table 1-1 also indicates that absolute error turns out to be 
a more consistent criterion than relative error—especially for evaluating power data. 
Thus by using absolute error as evaluation criterion, the approximation formulas 
should be able to achieve the following levels of accuracy (worst case scenario): 
 
dP—error in Ws      dQ—error in VARs      dU—error in mVs      dα—error in 10-6 º 
 
However, it should be noted that the accuracy levels estimated above are calculated 
against Equation 1-3 and Equation 1-4 only while ignoring all external disturbances. 
In practice, all the input variables for these two approximation equations are 
estimated values themselves, and estimation error might rise with increasing system 
scale and complexity. Therefore, a final error range of up to more than 10 times the 
above mentioned levels should be expected for the test distribution system. 
 

2.1.2 Calculation Steps of LFEA in a Radial Feeder 
 
The realization of LF estimation algorithm in a radial feeder can be identified as a 
three-step procedure, which is shown in Figure 1-5: 
 

 
 
Figure 1-5 Calculation Steps of LFEA for a Radial Feeder 
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It can be seen from Figure 1-5 that the given three steps (SPE, SVE, and IPVM) 
literally comprise the power-voltage iteration cycles revealed in Figure 1-4. The first 
two steps (SPE and SVE) are separated from IPVM sub-steps in order to initialize 
system power and voltage data, which serve as the basis of iterative calculations. In 
addition, for most applications, a cycling order of ITR = 3 is sufficient for achieving a 
moderate accuracy.  
 
When compared to the sub-steps of IPVM, the algorithm of SVE is almost identical to 
that of IVM in terms of logical structure, while SPE proves to be simpler than IPM 
since the former neither considers the variation of node voltages nor utilizes both 
ends of terminal data to calculate differential power. In order to explain how these 
steps and sub-steps work, following three flow charts (Figure 1-6, Figure 1-7, Figure 
1-8) are given to show the algorithms of SPE, SVE / IVM, and IPM. 
 

 
 
Figure 1-6 Algorithm of SPE (Starting Power Estimation) 
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Figure 1-7 Algorithm of SVE (Starting Voltage Estimation) and IVM (Iterative Voltage 
Modification) 
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Figure 1-8 Algorithm of IPM (Iterative Power Modification) 
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Notably Figure 1-7 and Figure 1-8 both contain an outer iteration cycle (with order of 
EL = 4) and an inner one (with order of N). The outer cycle makes it possible to 
serially process all LNL elements in a radial feeder, using tail-to-head sequence for 
power estimation and head-to-tail sequence for voltage estimation—namely, power 
data is handled from the end of the feeder to the beginning, while voltage data is 
dealt with in the reversed direction; this method was originally proposed by Carol 
Cheng and Dariush Shirmohammadi in their paper [47] in 1995, which was later 
named as ‘backward / forward sweep’ algorithm. 
 
The inner cycle, on the other hand, realizes the terminal-differential iterations shown 
in Figure 1-4. In the case of IPM, this inner cycling deducts both input and differential 
power flows of an LNL element from its output power and terminal voltages; while in 
the case of IVM (or SVE), this inner cycling deducts both output and differential 
voltage magnitudes and voltage angles from input voltage data and terminal power 
flows of an LNL element. This is shown in Figure 1-9 (blue squares refer to known 
variables and yellow circles refer to unknown variables): 
 

 
 
Figure 1-9 Interaction between Power and Voltage Data in IPM and IVM 
 
For power and voltage estimation purposes, a cycling order of N = 3 is generally high 
enough for obtaining fast convergence of terminal-differential iteration results. 
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2.2 Load Flow Estimation Algorithm for Meshed Feeders 
 
A meshed test network is given in Figure 1-10 to illustrate the working principles of 
LFEA under meshed conditions. Obviously this network is modified from the radial 
test network by adding a second feeder for meshing and a third, subsequent radial 
feeder after the meshing bus bar (or node) of the previous two. In this section, the 
third feeder is simplified as a PQ-constant load connected at meshing node, which 
leaves only the two meshed feeders under examination. 
 

 
 
Figure 1-10 Radial Test Network 
 
In order to solve meshed load flow problems, a generally adopted approach is to 
break down meshed rings into radial feeders [48] [49]. For given meshed network, 
the breaking point is naturally selected as meshing node, as shown in Figure 1-11. 

 
 
Figure 1-11 Equivalent Transformation of a Meshed Network into a Radial One 
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As explained in Figure 1-11, network transformation is achieved by splitting the 
meshed ring into two radial feeders, which in effect divides the equivalent total 
meshing load (PM + jQM) into two separate loads (P1M + jQ1M and P2M + jQ2M). The 
active and reactive power flows of these two equivalent loads respectively equal the 
output power flows in the ending line of each feeder in the original meshed network, 
namely: 
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 Equation 1-5 

Obviously, if no further feeders are connected after the meshing node—i.e., PM = 0 
and QM = 0, then P1M = -P2M, Q1M = -Q2M. In this case, the two equivalent meshing 
loads with opposite power flow directions from each other can be seen as splitted 
from a zero-power imaginary load that is connected to the meshing node. 
 
By using this equivalent transformation method, LFEA for meshed feeders can be 
easily developed from its radial version (detailed in 2.1) if the active and reactive 
equivalent meshing powers (EMP) can be estimated from given network parameters 
and variables. Thus the following section will be focused on introducing a number of 
EMP estimation approaches that aim to tackle this issue under different situations. 
 

2.2.1 Equivalent Meshing Powers (EMP) Estimation Approaches 
 
The basic idea behind EMP estimation is to build and solve power equations through 
voltage relationships—namely, the ending nodes of two equivalent radial feeders are 
splitted from one original meshing node and thus should have the same voltage 
magnitudes and voltage angles. Considering the fact that both feeders also originate 
from the same 20-kV bus bar, the total voltage magnitude drops and voltage angle 
drops along these two feeders should be consequently the same, which can be 
expressed by the Equation 1-6: 
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 Equation 1-6 

 
By applying Equation 1-4 into Equation 1-6, Equation 1-7 can be obtained as: 
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 Equation 1-7 

It can be seen that the terminal branch powers of all distribution lines are involved for 
fulfilling the meshing conditions. In the mean time, equivalent meshing powers are in 
turn required for obtaining the branch data. This correlation makes it necessary to 
apply iterative calculations to EMP problems, which can be explained by Figure 1-12: 
 

 
 
Figure 1-12 Iterative Calculation of Equivalent Meshing Powers 
 
The EMP initialization process shown in Figure 1-12 can be done by assuming zero 
powers for all equivalent radial feeders or by assigning a group of random data to the 
EMP variables. In the scope of this report, however, the initialization process evenly 
distributes total meshing powers (PM and QM) to the end of all equivalent radial 
feeders, which can be described by the following Equation 1-8: 
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 Equation 1-8 

Thus each iterative cycle of LF calculations (Figure 1-12) should aim to modify these 
initial EMP values as close to actual results as possible. If the EMP data before one 
cycle of EMP estimation are labeled as PkM and QkM, and the EMP data after the 
cycle are labeled as PkM’ and QkM’, then the task of EMP estimation can be described 

EMP Initialization: 
PkM_i, QkM_i 

LF Estimation for 
Meshed Feeders  

Branch Powers: 
Pki, Qki, Pko, Qko 

EMF Estimation for 
Meshed Feeders 

Meshing Powers: 
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as finding the differences ΔPkM = PkM’ - PkM and ΔQkM = QkM’ - QkM such that 
estimation errors of PkM’ and QkM’ should be minimum. 
 
In most distribution networks, transmitted power values can be assumed to be far 
larger than resistive and inductive power losses in the lines—i.e., Pi>>Ploss, Po>>Ploss, 
Qi>>QLloss, Qo>>QLloss (however, it should be noted that the reactive power losses 
here only consist of inductive losses caused by XL since the magnitude of negative 
capacitive losses of power cables can be close to or even larger than transmitted 
reactive powers). Therefore, the following simplifications in Equation 1-9 can be 
made for faster calculations of ΔPkM and ΔQkM: 
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 Equation 1-9 

By applying Equation 1-9 into Equation 1-7, Equation 1-10 can be obtained as: 
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 Equation 1-10 

Four decoupled linear equations above are now obtained for solving four unknown 
variables (P1M, Q1M, P2M, and Q2M). Thus simple matrix calculations will suffice for 
estimating EMP values. In the following two sections, two different solutions are 
provided to suit different situations. 
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2.2.1.1   2nd-Order EMP Estimation under Constant Node Voltages  
 
As already discussed in 3.1.2, the initial estimation of system power data is done 
without knowledge of feeder voltages. Thus EMP estimation during this stage also 
has to be done by assuming a constant voltage magnitude throughout all nodes—it 
should be noted, however, that Equation 1-6 will still hold true despite the fact that it 
is based on different prerequisite conditions (voltage drops unequal to zero). By 
applying this assumption to Equation 1-10, Equation 1-11 can be obtained as: 
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 Equation 1-11 

Thus by introducing parameters A, B, M, and N, Equation 1-11 can be transformed 
into the matrix form shown in Equation 1-12: 
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Therefore, the EMP variable vector X4 can obtained through the product of T44
-1 and 

V4, as shown in Equation 1-13: 
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 Equation 1-13 

 
Obviously, this type of EMP estimation method under constant node voltages (CNV) 
should be applied to SVE (Starting Voltage Estimation) stage of calculation, as it is 
not accurate enough for further iterative calculations. This is why section 2.2.1.2 is 
provided below, in which a more accurate estimation approach is suggested. 
 

2.2.1.2   2nd-Order EMP Estimation under Varying Node Voltages 
 
When LF estimation comes to the stage of iterative calculations, all system node 
voltages will become available, therefore the assumption made in section 2.2.1.1 is 
no longer necessary or valid. In this case, Equation 1-10 can be solved directly for 
EMP variables. Thus by introducing parameters A, B, C, D, M, and N, Equation 1-14 
can be obtained as: 
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Thus as discussed in 3.2.1.1, vector X4 can obtained through the product of T44
-1 and 

V4, as shown in Equation 1-15: 
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 Equation 1-15 

When this EMP estimation approach with varying node voltages (VNV) is applied to 
IPM (Iterative Power Modification) procedures, the cycling between IPM and IVM 
processes will enable gradual decrease of voltage estimation errors with increasing 
numbers of iterations, which will in turn reduce EMP estimation errors step-by-step. 
 

2.2.1.3   Higher-Order EMP Estimations 
 
Previous sections have only considered the meshing of two radial feeders. When 
three or more radial feeders are found to be meshed at one common bus bar or 
node, the aforementioned algorithms can still be applied, but the formulas have to be 
extended to suit higher order calculations. Figure 1-13 shows the W-th order meshing 
structure of test network, in which W equivalent radial feeders will be found after 
transformation: 

 
 
Figure 1-13 N-th Order Meshed Test Network 
 
Although 4 LNL elements are shown for all radial feeders in Figure 1-13, the actual 
counts can be any real integer values—namely, it can be assumed that a total 
number of Ek LNL elements can be found in the k-th radial feeder (k = 1, 2, …, W). 
Therefore, Equation 1-16 can be obtained for EMP data: 
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Consequently, similar to Equation 1-10, a total number of 2*W formulas can be 
obtained for solving 2*W EMP variables, thus the meshing matrices given in sections 
3.2.1.1 and 3.2.1.2 should be modified respectively, as shown below: 
 
1. EMP Estimation under CNV (Constant Node Voltages) 
 
Parameters A, B, M, and N are defined similarly as in 2.2.1.1, the matrix form of EMP 
equations can be written as: 
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 Equation 1-17 

2. EMP Estimation under VNV (Varying Node Voltages) 
 
Parameters A, B, C, D, M, and N are defined similarly as in 2.2.1.2, the matrix form of 
EMP equations can be written as: 
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 Equation 1-18 

For both cases, the same equation XW = TWW
-1  Vw can be applied for calculating 

EMP data. 
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2.2.2 Calculation Steps of LFEA in a Meshed Feeder 
 
The LF estimation procedure for meshed feeders can be seen as modified from its 
radial version (Figure 1-5) by applying EMP estimation process shown in Figure 1-12 
into SPE and IPM algorithms, which can be seen from Figure 1-14: 
 
 

 
 
Figure 1-14 Calculation Steps of LFEA for a Meshed Feeder 
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It should be noted that voltage estimation algorithms (SVE and IVM) for meshed 
feeders are exactly the same as their radial counterparts, while the LF estimation 
processes (sub-steps 2 and 4) for meshed SPE and IPM can be seen as equivalent 
to simultaneously applying radial power estimation algorithms (SPE or IPM) to all 
equivalent radial feeders of a meshed set. In a meshed SPE or IPM process, power 
flows in all meshed feeders are calculated both before and after EMP estimation in 
order to minimize errors when calculating voltage drops from power data. 
 

2.3 Load Flow Estimation Algorithm for Test Network 
 
In scope of this report, major network calculations are carried out for a real-life 20kV 
German distribution grid. The general structure of this grid is shown in Figure 1-15. 
 

 
  
Figure 1-15 General Structure of Test Network 
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It can be seen that test network consists of 16 separate feeders, which can be 
categorized into 2 sub-networks that are both fed from the 2nd side of transformer. 
Detailed network plot is shown in Figure 1-16. 
 

 
 
Figure 1-16 Detailed Structure of Test Network 
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Figure 1-15 and Figure 1-16 show that in both sub-networks, all radial feeders are 
fed from the common meshing bus bar (SST68 or SST127) of preceding meshed 
feeders. Although coupling lines (dashed arrows in Figure 1-15) are placed both 
within and between two sub-networks, they are not supposed to be closed under 
normal operation conditions (i.e., without fault)—this means that some relatively 
complicated meshing scenarios (such as the case of closed-coupler operation 
between F7 and F8, or between F9 and F10) do not have to be considered when 
estimating steady-state load flow behavior of test network. Consequently, with the 
knowledge of previous two sections (3.1 and 3.2), it is possible to develop a load flow 
estimation algorithm for test network under its given structure. 
 
A close examination into the 16 feeders of test network reveals that feeder lengths in 
terms of connected LNL elements are quite different from feeder to feeder. And in 
addition, a large proportion (around 2/3) of LNL elements does not contain load 
components (or can be seen as having zero-loads connected to line ends)—namely, 
around two thirds of network nodes are cable joints with no loads connected to them. 
The following Table 1-2 aims to describe these network characteristics by listing the 
number of distribution lines, total length of all lines, the number of (non-zero) loads, 
and total active power of all loads for each feeder in the test network: 
 
Feeder \ 
Info 

Number of 
Distribution Lines 

Total Length of 
all Lines (km) 

Number of Non-
zero Loads 

Total Active Power 
of all Loads (kW) 

F1 31 6,956 11 3653 
F2 40 7,188 14 3431 
F3 13 5,379 7 5246 
F4 14 4,782 3 555 
F5 6 1,059 2 355 
F6 35 8,681 15 2453 
F7 9 1,372 3 676 
F8 19 2,247 9 2510 
F9 31 7,357 10 2491 
F10 30 12,621 3 290 
F11 13 2,165 7 877 
F12 5 3,244 1 3200 
F13 7 2,807 4 404 
FA 35 5,443 13 3005 
FB 8 4,426 6 330 
FC 6 6,545 0 0 
Sum 302 82,272 108 29476 
 
Table 1-2 Feeder Information of Test Network 
 
Apparently the distribution network has a total active load rating of 29.476MW, which 
could cause the feeding transformer (40MVA) to be loaded at about 80% if all the 
customers simultaneously reach maximum loading. In practice, however, it is quite 
unlikely for customers of different types (i.e. residential and commercial) to share 
simultaneous load peaks, thus the actual total power demand could vary from below 
20% to around 80% (to be revealed in section 3.3.5) of total rating for different times 
of a year (detailed in Chapter 2). Consequently, the loading of feeding transformer 
would fall into the range of 10% ~ 70% during normal operation conditions, which 
turns out to be a considerably broad scope of power output—this means on-load tap-
changer could be used to improve voltage stability (explored further in chapter 7). 
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2.3.1 Power-Based Transformer Voltage Estimation (PBTVE) 
 
In test distribution network, an 110kV/20kV feeding transformer supplies the medium-
voltage city grid by drawing power from an external 110kV transmission network. The 
high-voltage terminal of this feeding transformer can thus be considered as the slack 
node in test network by assuming unlimited hosting capacity for the external 110kV 
network. 
 
The feeding transformer plays a crucial role in the load flow estimation algorithm of 
test network as the transition point from power estimation to voltage estimation—
namely, estimated total active and reactive power flows of ensuing city grid, viewed 
as the output data of this transformer, can be used to estimate input power and 
output voltage of the device; the output voltage can thus be further used to estimate 
node voltages in ensuing feeders. This can also be seen from Figure 1-17 [47]: 
 

 
 
Figure 1-17 Power-Voltage Interaction between Feeding Transformer and Feeders 
 
The process of estimating input power and output voltage of feeding transformer from 
its output power is hereby referred to as ‘Power-Based Transformer Voltage 
Estimation’ (PBTVE) procedure in this report. Thus the following paragraphs will 
focus on describing the implementation of this method. 
 
First, the equivalent electrical circuit of a typical power transformer with an on-load 
tap-changer is given in Figure 1-18 as a reference [44]. 
 
 

 
 
Figure 1-18 Equivalent Circuit of a Power Transformer 
 
In scope of this report, active (iron losses) and reactive power losses caused by 
shunt elements (Xh and RFe) are neglected to simplify the equivalent model. Thus the 
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same output current Io can be assumed to flow throughout the secondary side of 
equivalent model—namely, Ii2 = Io. Given the basic voltage data of UN1 = 110kV, UN2 
= 20kV, ü = 110 / 20 = 5.5, and uT (per-tap voltage change) = 1%, the following 
Equation 1-19 can be obtained to describe the voltage-current relationship between 
primary and secondary sides of the feeding transformer [44] [45]: 
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 Equation 1-19 

Obviously, the output voltage of feeding transformer can be obtained once both input 
and output apparent power flows of the device are known—since only output power 
flows of the transformer are available at the beginning stage of calculation, it is 
necessary to estimate differential and input power values of the device from output 
power and voltage data. This can be done by using a similar approach to the one 
used for solving line power flows introduced in section 2.1.1. The basic formulas 
necessary for this estimation procedure can be found in Equation 1-20: 
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 Equation 1-20 

Obviously, since one (Uo) of the estimated variables is also used as estimation input 
data, iterative calculations have to be performed to achieve maximum accuracy. The 
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iteration cycles can be expressed by Figure 1-19 (squared variables are already 
known before estimation, while circled variables are originally unknown): 

 
 
Figure 1-19 Basic Iteration Cycle of Power-Based Transformer Voltage Estimation 
 
Study into test distribution grid shows that 10 iteration cycles are generally sufficient 
for fast convergence of estimated power and voltage data, since further cycles of 
iteration would modify estimated data on scales much smaller than expected 
estimation accuracy level (referred to 2.1.1) and are thus unnecessary. 
 

2.3.2 Modeling of Branched Feeders in LFEA 
 
In test network, a large proportion of feeders share a common topological feature—
they have one or more branches. The existence of branches in a feeder invariably 
complicates the algorithm of load flow estimation [48], as the previous linear 
accumulation of power data and monotonous stepping down of node voltages can no 
longer be applied to the whole feeder range. In orders to tackle this issue, tag 
variables need to be defined to mark different sections of a branched feeder. 
 
In this section, only one degree of freedom is considered for branching of all 
feeders—namely, only one branch can be connected to a given node and no sub-
branches should exist. In Figure 1-20, a typical branched feeder of this type is given. 
 

F(BEi+2)F(BBi-2) F(BEi+1)F(BBi-1)

F(BBi) = Bi(1)

F(1)

F(BBi+1) = Bi(2)

F(BEi) = Bi(Ni)

F(x)

LNL Element

F(M)

 
 
Figure 1-20 Naming Convention and Topological Structure of a Branched Feeder 
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In Figure 1-20, the given feeder with M sets of LNL elements (labeled as F(x) ) can 
have one or more branches, of which branch Bi with Ni sets of LNL elements (labeled 
as Bi(x) ) is taken out as an example. It can be seen that the first LNL element F(BBi) 
in the branched section is counted directly after the last element F(BBi-1) before the 
branch; while similarly, the first element after the branch F(BEi+1) is counted after the 
last element F(BEi) in the branch. In this way, the data of all M sets of LNL elements 
can be saved in a single array, although topology data of the feeder has to be dealt 
with separately. 
 
Generally, when there is more than one branch in the feeder, it is necessary to divide 
the feeder into a main section (horizontal part in Figure 1-20) and a number of 
branched sections, which can be respectively labeled as MS (main section) and BS 
(branched section). Similarly, the last LNL element (in main section) before a branch 
can be labeled as LB (last before branch), and the first element (in main section) 
after a branch can be labeled as FA (first after branch). Thus a tag array can be 
developed to save the topological type (MS, BS, LB, or FA) of each LNL element, 
which turns out to be crucial for power and voltage calculations of the branched 
feeder. 
 
First, power estimation approaches in the branched feeder should vary for different 
LNL topological types, thus modifications have to be made to the SPE and IPM 
algorithms given in previous sections for both radial and meshed cases—specifically, 
the tail-to-head power accumulation process using AcP and AcQ variables (referred 
to Figure 1-6 and Figure 1-8) has to be adjusted to accommodate branched data. In 
order to illustrate the changes brought about by branches to the power calculation 
procedure, Figure 1-21 is given as a reference. 
 

 
 
Figure 1-21 Power Accumulation Procedure of a Branched Feeder 
 
From Figure 1-21, it can be seen that MS and BS power values are first accumulated 
separately, and later combined at the corresponding LB element, which serves as the 
junction point of these two streams of power. With reference to section 2.1.2, two 
extra accumulation variables BaP and BaQ should be introduced in addition to AcP 
and AcQ in order to summarize power data at branched sections of the feeder. 
Consequently, the algorithm shown in Figure 1-22 can be applied for estimating 
active and reactive power flows of branched feeders: 
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Figure 1-22 Power Estimation Algorithm for Branched Feeders 
 
It should be noted, however, that branching information only affects the load-power 
accumulation fraction of SPE and IPM processes, thus the remaining proportions of 
power estimation procedures should follow the same steps as shown in section 2.1.2. 
 
Voltage estimation algorithm, on the other hand, will be affected by feeder branching 
in a relatively different manner from the case of power estimation discussed so far. 
Considering the fact that SVE and IVM processes originally rely on a head-to-tail 
sequence to calculate voltage data in a feeder, FA elements—instead of LB ones—
will take on the most crucial role in the voltage estimation processes of branched 
feeders. This is also shown in Figure 1-23: 
 

 
 
Figure 1-23 Voltage Degradation Procedure of a Branched Feeder 
 
It can be seen from Figure 1-23 that linear degradation of node voltages can be 
assumed for both the main section before a branch and the branch itself, while the 
FA element retraces the node voltage to that of the corresponding LB element and 
apply the voltage drop of FA line directly to it. This can be explained by Figure 1-24. 
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Figure 1-24 Voltage Estimation Algorithm for Branched Feeders 
 
Much similar to the case of power estimation, branched feeders need modifications 
to original SVE and IVM algorithms only at the stage of input voltage definition 
through the voltage output of a previous LNL element. Therefore, the remaining 
proportions of the algorithm should follow the same steps as shown in Figure 1-7. 
 

2.3.3 Calculation Steps of LFEA for Test Network 
 
With the previous accounts on radial, meshed, and branched feeders as well as the 
feeding transformer, it is now possible to develop a compound algorithm that can be 
applied directly to test network. Thus the following Table 1-3 and Figure 1-25 will 
respectively give the data definition and algorithm of the final LFEA of test network. 
 
N Input Variables Output Variables 
1 Line Line Name Pin (kW) Input Active Power 
2 l (km) Line Length Qin (kVAR) Input Reactive Power 
3 r (mΩ/km) Rel, Resistance Sin (kVA) Input Apparent Power 
4 x (mΩ/km) Rel, Reactance (Ind.) Iin (A) Input Current 
5 c (nF/km) Rel, Capacitance Pout (kW) Output Active Power 
6 R (mΩ) Line Resistance Qout (kVAR) Output Reactive Power 
7 XL (mΩ) Line Reactance (Ind.) Sout (kVA) Output Apparent Power 
8 XC (kΩ) Line Reactance (Cap.) Iout (A) Output Current 
9 Ith (kA) Line Current Rating Unode (kV) Node Voltage Magnitude 
10 Node Node Name Αnode (º) Node Voltage Angle 
11 Load Load Name dP (kW) Active Power Difference 
12 PL (kW) Load Active Power dQ (kVAR) Reactive Pow. Difference 
13 QL (kVAR) Load Reactive Power dS (kVA) Apparent Pow. Difference 
14 SL (kVA) Load Apparent Power dU (kV) Voltage Magn. Difference 
15 cosφL Load Power Factor dα (º) Voltage Angle Difference 
16 FtE_Volt Tag for Voltage Cal. Irat (%) Current Loading of Line 
17 EtF_Pow Tag for Power Cal. Srat (%) Power Loading of Line 

 
Table 1-3 Complete List of Input and Output Variables for the Final Version of LFEA 

N N N 
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MS BS FA 

LNL Element ( j ) 

Ui( j ) = Uo( j – 1 ) 
αi( j ) = αo( j – 1 ) 

Ui( j ) = Uo( j – Ni – 1 ) 
αi( j ) = αo( j – Ni – 1 ) 
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Figure 1-25 Load Flow Estimation Algorithm for Test Network 
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2.3.4 Error Analysis for Estimation Results under Rated Condition 
 
In order to evaluate the accuracy of LFEA method for test network, the calculation 
result from LFEA under rated condition (all loads are operated under maximum 
rating) is compared to that from SINCALTM (Newton-Raphson method) in Table 1-4: 
 

 Incoming Pin (kW)  Incoming Qin (kVAR) Pow  
/ F SINCAL LFEA ABS_Error SINCAL LFEA ABS_Error 
F1 5847,0134 5847,0240 1,061E-02 473,3139 473,2692 -4,475E-02 
F2 3468,3273 3468,3353 7,997E-03 920,1811 920,1602 -2,087E-02 
F3 5033,4403 5033,4140 -2,638E-02 2220,9579 2221,0169 5,906E-02 
F4 4096,1418 4096,1518 1,004E-02 1398,7246 1398,7319 7,314E-03 
F5 355,1460 355,1460 2,701E-05 84,2576 84,2576 -5,311E-06 
F6 2460,4929 2460,4929 5,079E-05 652,9541 652,9539 -1,743E-04 
F7 676,3869 676,3870 5,106E-05 179,4893 179,4893 -3,088E-05 
F8 2512,9742 2512,9743 7,357E-05 735,9987 735,9987 1,026E-05 
F9 2500,8517 2500,8526 9,290E-04 545,5320 545,5323 2,407E-04 
F10 5849,9963 5850,0185 2,215E-02 1573,1903 1573,1382 -5,205E-02 
F11 877,4075 877,4075 3,455E-05 222,4892 222,4891 -6,652E-05 
F12 3214,9306 3214,9294 -1,146E-03 998,1078 998,1062 -1,599E-03 
F13 404,1943 404,1945 2,662E-04 79,4909 79,4911 1,953E-04 
FA 3017,4622 3017,4624 1,665E-04 787,4449 787,4448 -1,922E-04 
FB 330,2592 330,2592 2,034E-05 87,5354 87,5353 -7,584E-06 
FC 5646,0279 5646,0061 -2,177E-02 1564,1744 1564,2329 5,849E-02 
TR 29940,9470 29940,9496 2,642E-03 8150,5421 8150,5494 7,208E-03 

 
Beginning Ube (kV) Ending Ued (kV) Volt 

/ F SINCAL LFEA ABS_Error SINCAL LFEA ABS_Error 
F1 20,170783 20,170782 -4,659E-07 19,925106 19,925107 7,319E-07 
F2 20,130987 20,130986 -2,461E-07 19,925106 19,925107 7,117E-07 
F3 19,980011 19,980012 1,102E-06 19,925106 19,925107 7,150E-07 
F4 20,038862 20,038863 9,136E-07 19,925106 19,925107 7,555E-07 
F5 19,924446 19,924447 6,933E-07 19,915533 19,915534 6,437E-07 
F6 19,669708 19,669717 9,237E-06 19,591741 19,591750 9,275E-06 
F7 19,673141 19,673150 9,246E-06 19,665474 19,665484 9,319E-06 
F8 19,924663 19,924664 7,207E-07 19,883507 19,883508 7,274E-07 
F9 19,916457 19,916458 6,595E-07 19,792564 19,792564 7,288E-07 
F10 20,198993 20,198992 -5,689E-07 19,679847 19,679857 9,248E-06 
F11 19,679383 19,679392 9,249E-06 19,668646 19,668656 9,413E-06 
F12 19,678428 19,678437 9,229E-06 19,586147 19,586157 9,954E-06 
F13 19,673256 19,673266 9,292E-06 19,667253 19,667262 9,313E-06 
FA 19,678241 19,678250 9,254E-06 19,543702 19,543711 9,442E-06 
FB 19,677467 19,677476 9,301E-06 19,659706 19,659716 9,307E-06 
FC 20,201139 20,201138 -6,620E-07 19,679847 19,679857 9,291E-06 
TR 20,000000 20,000000 0,000E+00 20,204573 20,204573 -6,525E-07 

 
Table 1-4 LFEA Error Analysis under Rated Condition 
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The active and reactive power data shown in Table 1-4 are taken at the incoming end 
of all feeders in test network, thus each power value can be seen as representing 
maximum error in its feeder due to the tail-to-head power calculation nature of LFEA. 
In the mean while, the voltage data in Table 1-4 are taken respectively from nodes of 
the first (Ube) and the last (Ued) LNL element in each feeder, which makes its possible 
to examine the general variation of voltage estimation error along each feeder. 
 
Table 1-4 reveals that the estimation error of power and voltage data summarized at 
the feeding transformer (last line ‘TR’ in Table 1-4) approximately fall into the size 
ranges calculated in 3.1.1 (respectively in kW’s, kVAR’s, and mV’s); while the 
estimation error of a specific feeder or a LNL element could be more than 10 times 
larger than the calculated values. This can also be seen through the following Table 
1-5, in which the second column shows the maximum errors from all feeders and the 
third column shows the maximum errors obtained from the output data of the feeding 
transformer: 
 
 Feeder Transf. Feeder / Transf. 
Abs_Err_P (W) 26.3833 2.642 9,986109 
Abs_Err_Q (VAR) 59.0586 7.208 8,193479 
Abs_Err_U (mV) 9.9543 0.6525 15,25563 

 
Table 1-5 Maximum and Summarized Errors of LFEA under Rated Condition 
 
Also it can be seen from Table 1-4 that absolute estimation errors vary significantly 
from feeder to feeder, in both power and voltage sectors. Thus in Figure 1-26, the 
per-feeder active and reactive power estimation errors are first given to display this 
phenomenon: 
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Figure 1-26 Per-Feeder Power Estimation Errors of LFEA under Rated Condition 
 
Obviously, all the meshed feeders (F1, F2, F3, F4, F10, and FC) generally have 
much larger (more than 10 times) estimation errors than the remaining radial feeders. 
Three factors could have led to this result, namely: 
 

1) Most importantly, The EMP estimation method (2.2.1) is based on the 
assumption that line power losses can be neglected when compared to 
transmitted powers (Equation 1-9), thus errors caused by this premise cannot 
be completely eliminated by iterative calculations;   

2) Most long (>1km) cables and overhead lines are located in meshed feeders, 
thus the relatively large errors caused by them (Table 1-1) will make the total 
estimation errors of these meshed feeders escalate correspondingly; 
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3) All radial feeders are connected after meshed feeders, thus the power 
estimation errors caused by them will be passed on to their preceding 
meshed feeders in addition to the errors coming from the meshed feeders 
themselves—however, this factor might be less crucial than the previous two. 

 
Similarly, the estimation errors for beginning (Ube) and ending voltages (Ued) of 
differently feeders are shown in Figure 1-27: 
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Figure 1-27 Per-Feeder Power Estimation Errors of LFEA under Rated Condition 
 
Interestingly, Figure 1-27 shows that the estimation errors for the ending voltages of 
the second sub-network (referred to Figure 1-15, namely F10, FC, F6, F7, F10, F11, 
F12, F13, FA, and FB) are generally about 10 times larger than those of the first sub-
network (F1, F2, F3, F4, F5, F8, and F9).  
 
This can be explained by examining the difference between two error curves in the 
plot—obviously, F10 and FC have the largest differences between the estimation 
errors of Ube and Ued in comparison to other feeders (esp. the meshed feeders in the 
first sub-network), which suggests the voltage degradations along these two feeders 
to be the largest source of error in the whole sub-network. A look-back at Table 1-2 
reveals that F10 has the largest total line length (over 12km) of all feeders, while FC 
features the largest average line length (over 1km per line) in the network—
obviously, both feeders can contribute significantly to the estimation error of Ued 
considering the numbers and lengths of long distribution lines in them. 
 

2.3.5 Load Curve Extension of LFEA for Test Network 
 
The realization of load curve calculation in LFEA itself does not prove to be difficult—
simple iterations of basic LFEA module for 8760 sets of load curve data will suffice. 
However, the determination of load curve data in test network has to be completed 
before the actual algorithm can be executed. In order to do this, the simulated load 
curves obtained beforehand (detailed in section 1.5 of chapter 1) have to be applied 
to the 108 customer loads in test network. Thus it is important to know what types of 
load curves should be used and how they are to be allocated to all the loads. 
 
Firstly, as already disclosed in chapter 2, five typical load curves are considered in 
this report—namely they are household, business, commercial, industrial, and 
agricultural loads. For the given city grid, it can be generally assumed that the 
majority of loads are divided between household and C&I (commercial and industrial) 
customers, thus a rough proportion of 4:2:2:1:1 can be assumed for the given load 
types. Load allocation by this proportion gives Table 1-6 for test network: 
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A_Household ΣP(kW) No. B_Business ΣP(kW) No. 
      sumB1 2189 4 
sumA1 1349 8 sumB2 1956 4 
sumA2 1388 8 sumB3 1758 4 
sumA3 1373 9 sum_B 5903 12 
sumA4 1310 10 Percent_B % 20,02646 11,11111 
sumA5 1264 9     
sumA6 1294 10 C_Commercial ΣP(kW) No. 
sumA7 1309 8 sumC1 1963 5 
sumA8 1382 9 sumC2 2090 4 
sumA9 1319 10 sumC3 1832 4 
sum_A 11988 81 sum_C 5885 13 
Percent_A % 40,67038 75 Percent_C % 19,9654 12,03704 
    
D_Industrial ΣP(kW) No. E_Agricultural ΣP(kW) No. 
sum_D 2500 1 sum_E 3200 1 
Percent_D % 8,481476 0,925926 Percent_E % 10,85629 0,925926 

      
  ΣP(kW) No. ΣP — Total Rated Active Power of Loads 
sum_total 29476 108 

  
  
  No.— Load Count of the Same Type 

 
Table 1-6 Allocation of Load Types for Test Network 
 
In the bold lines of Table 3-6, the summarized allocation results for each type of load 
can be seen through the total amount of active power (ΣP) and the number of loads 
included (No.). The total power ratio after allocation turns out to be rather close to the 
original 4:2:2.1:1 setting, which can be seen through Figure 1-28: 
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Figure 1-28 Total Power Ratio of All Load Types in Test Network 
 
In addition, Table 1-6 also suggests that for each type of load, several equivalent 
load curves that share the same stochastic property (RCV—referred to section 2.5) 
should be generated and distributed evenly (for both power and number of loads). It 
can be seen from the table that the actual numbers of load curves taken for the given 
load types are 9, 3, 3, 1, 1, thus if a general RCV 0 of 5% is assumed throughout the 
whole network, then the RCV for these five types of load curves can be calculated as 
15%, 8.7%, 8.7%, 5%, 5% (2.5.3). This is also shown in Figure 1-29: 
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Figure 1-29 Detailed Load Allocation Scheme in Test Network 
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With the obtained annual load data, it is then possible to extend the existing load flow 
estimation algorithm to suit the purpose of load curve calculations. In later chapters, 
the generation curves of wind turbines and PV arrays are also included in the 
estimation algorithm, which implements the stochastic DG evaluation function in the 
LFEA module as well. It should be noted, however, that during the annual load curve 
calculation process, the tap-changer of feeding transformer is currently fixed at a 
selected position for all data points. This measure is taken to simplify DG evaluation 
procedures in ensuing chapters, while on-load tap changing possibility will be later 
considered for implementation of active network control. 
 

2.3.6 Error Analysis for Load Curve Estimation Results 
 
In order to check into the performance of LFEA under different loading scenarios 
during load curve calculation processes, a weekly set (168) of load curve data is 
tested both with LFEA and SINCAL. In following paragraphs, the calculated total load 
power demand (summarized from power demands of all loads in network), total 
power losses, and the voltage magnitudes of the starting bus bar UA31 from both 
sources are first compared with each other, and then the absolute errors of LFEA are 
subsequently obtained for each of them. 
 
Firstly, the following three figures (Figure 1-30, Figure 1-31, and Figure 1-32) show 
respectively the weekly curves of total active load power (Pload), total reactive load 
power (Qload), and the absolute estimation errors of the previous two variables: 
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Figure 1-30 Weekly Active Load Power Figure 1-31 Weekly Reactive Load Power
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Figure 1-32 Weekly Load Power Estimation Errors 
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It can be seen that estimation errors for total load power demand generally fall into 
the range of several mW’s or mVAR’s, which can be regarded as negligible when 
compared to the MW- and MVAR- scales of Pload and Qload. The totally random nature 
of estimation errors (shown in Figure 1-32) suggests the cause of the error to be the 
difference in the accuracy levels (e.g., the number of decimal digits taken for a 
double variable) of two programs under examination. 
 
Similar to the plots before, the following three figures (Figure 1-33, Figure 1-34, and 
Figure 1-35) respectively show the weekly curves of total active power loss (dPtot), 
total reactive power loss (dQtot), and the absolute estimation errors of both variables: 
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Figure 1-33 Weekly Active Power Loss Figure 1-34 Weekly Reactive Power Loss 
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Figure 1-35 Weekly Power Loss Estimation Errors 
 
Obviously, the estimation errors of dP and dQ shown in Figure 1-35 vary within the 
range of several kW’s or kVAR’s, which can be seen as consistent with the outcome 
of LFEA under rated operating condition (3.3.4). Figure 1-35 also suggests that the 
error curves of dP and dQ respectively follow some roughly daily cycles, which 
indicates the influence of input load curves on the estimation accuracy of LFEA. 
Another noticeable fact concerning Figure 1-35 is that dP and dQ generally have 
opposing trends of error curve development—namely, the error of dQ will most likely 
decrease when the error of dP increases, and vice versa. Thus simultaneous error 
reduction for both variables does not appear to be achievable for current algorithm. 
 
With given descriptions on total load power demands and total power losses, it is 
now possible to obtain the estimation errors of system slack power summarized at 
the incoming end of feeding transformer through Equation 1-21. 
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 Equation 1-21 

Obviously, since slack power flows can be seen as the sum of total power demands 
and power losses, estimation errors of them should follow the same relationship. As it 
is already known that estimation errors of total power demands (mW, mVAR) are 
around 1000 times smaller than those of power losses (W, VAR), estimation errors of 
slack power flows can be seen as approximately equal to those of the power losses. 
 
Finally, voltage estimation accuracy of LFEA is examined in Figure 1-36 and Figure 
1-37, which show respectively the weekly curves of the voltage magnitude at starting 
bus bar UA31 and the absolute estimation errors of the estimated results: 
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Figure 1-36 Weekly UA31 Voltage Magnitudes 
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Figure 1-37 Weekly UA31 Voltage Magnitude Estimation Errors 
 
When compared to Figure 1-35, the estimation error curve of UA31 voltage in Figure 
1-37 shows similar behaviors as the curves of power losses. In order to compare the 
error ranges of slack power and starting voltage data, Table 1-7 is given: 
 
 Tran_Low Tran_Upp F/T Fed_Low Fed_Upp U/L 
Abs_Err_P (W) 2.5 5.5 10 25 55 2.2 
Abs_Err_Q (VAR) 5.5 9.5 10 55 95 1.7 
Abs_Err_U (mV) 0.4 0.8 15 6 12 2 

 
Table 1-7 Transformer and Feeder Error Ranges of LFEA Load Curve Calculation 
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The second and the third columns in Table 1-7 respectively give the lower and upper 
boundaries of summarized power and voltage estimation errors, which are taken 
directly from Figure 1-35 and Figure 1-37. With the Max/Sum ratios estimated from 
Table 1-5, expected maximum estimation errors for single network elements are 
listed in the fifth and sixth columns in Table 1-7. Comparison of summarized and 
maximum error data between Table 1-5 and Table 1-7 shows relatively good 
consistency of LFEA under various loading conditions, which, in addition to the fact 
that upper-to-lower boundary ratios (U/L) of both power and voltage data 
approximate 2, proves the fact that LFEA exhibit a reasonably good applicability to 
load curve calculations. 
 

2.4 Algorithm Extension to General Distribution Grids 
 
Up to section 2.3, a load flow estimation algorithm (LFEA) has been introduced to 
provide approximated LF solutions for various network structures. However, the 
algorithms presented in these sections are ad-hoc solutions in essence and can only 
be applied to specific networks. In order to avoid repetitive modifications of  
LFEA code to accommodate different distribution grids, standardized modules are 
implemented to LFEA in this section. 
 

2.4.1 Topology Definition: Grid-wise and Feeder-wise 
 
The topology of a typical distribution grid can be viewed in a two-step manner—first, 
a grid-wise viewpoint can be taken to describe the whole grid in terms of feeders and 
transformers; and then a feeder-wise perspective will present each feeder in the grid 
with LNL elements. In Figure 1-38, a sample network is presented grid-wise. 
 
 

 
 
Figure 1-38 Definition of Grid-wise Topology for a Sample Distribution Network 
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As can be seen from Figure 1-38, LFEA sub-divides a distribution grid into different 
layers so as to facilitate serial calculation of power and voltage. For each layer (>1), a 
number of power inflow nodes (e.g. P2 for Layer 2) and a number of power outflow 
nodes (e.g. P3, P4, and P5 for Layer 2) act as intermediates between neighboring 
layers. Due to the generally radial characteristics of distribution grids, LFEA assumes 
that the number of inflow nodes should be equal or less than outflow nodes for each 
grid-wise layer. In the mean time, it can be seen from Figure 1-38 that between any 
pair of inflow and outflow nodes three potential network segments could be found: 
 

1. One transformer (e.g. T2) 
2. One feeder (e.g. F3) 
3. A number of parallel meshed feeders (e.g. F1 and F2) 

 
Consequently, in any given grid layer an inflow node could be connected to one or 
more network segments belonging to any one of the three types described above, 
while an outflow node could only be connected to one network segment under the 
assumptions made for current LFEA. Such a pan-radial structure in grid-wise sense 
makes it possible to apply backward/forward sweep principle to calculate power and 
voltage data. 
 
Now that overall network topology is expressed in a grid-wise plot, feeder-wise 
detailed definitions of LNL elements can be seen from Figure 1-39. Obviously, for 
each feeder a main section (MS) and a certain amount of sub-sections (SS) can be 
identified, while the sub-sections can be again sorted into different feeder layers. In 
order to tackle with multiple layers of sub-sections, branched LF solution given in 
section 3.3.2 has to be adapted significantly, which will be done in ensuing sections. 
 

 
 
Figure 1-39 Definition of Feeder-wise Topology for a Sample Distribution Feeder 
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2.4.2 General Applicability and Feeder Data Structure 
 
It has been suggested in section 3.4.1 that extended LFEA will generally work on 
pan-radial distribution grids—the term ‘pan-radial’ extends LFEA applicability from 
purely radial grids to lightly-meshed networks. As long as the inflow/outflow node 
count precondition (inflow ≤ outflow, defined in section 3.4.1) of each grid layer is 
satisfied, LFEA applicability can be ensured. Consequently, LFEA can be identified 
as an algorithm capable of dealing with maximally one degree of feeder meshing 
between any pair of inflow/outflow nodes. This rule is first illustrated by Figure 1-40, 
in which a lightly-meshed sample grid is shown at left, while at right side a viable 
interconnection line is added to the original grid. Both networks can be calculated 
with LFEA, as they both satisfy requirements of a pan-radial grid. 
 

 
 
Figure 1-40 Examples of Supported Network Structures by LFEA 
 
Figure 1-41, on the other hand, shows two interconnection scenarios of the sample 
network that are unsupported by LFEA. The grid at the left side of Figure 1-41 shows 
a feeder meshing order of 2 (meshed rings found within other meshed rings), which 
breaks the inflow/outflow count rule by have more inflow nodes than outflow ones in 
the third layer. Inter-meshed grid shown at the right side of Figure 1-41 also features 
an increase in meshing order but breaks pan-radial requirement by having a feeder 
F4 whose inflow and outflow nodes are found to be at the same level, which makes it 
impossible to determine the layer of F4. 
 

 
 
Figure 1-41 Examples of Unsupported Network Structures by LFEA 
 
Consequently, the precondition for application of LFEA can be summarized as: 
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1. Between any two nodes in grid-wise topology, only singe or parallel feeders 
or transformers are connected (i.e. no further nodes found in between); 

2. For any grid layer, the number of inflow nodes must be smaller or equal to the 
number of outflow nodes; 

3. The two terminal nodes of any network segment (defined in section 2.4.1) can 
not belong to the same level (i.e. both at inflow or outflow side of a layer). 

 
It should be noted, however, that meshing is only allowed on a grid-wise level; while 
on a feeder-wise level only purely radial structures are allowed (as shown by Figure 
1-39).  
 
Since LFEA is essentially based on linear accumulation of LNL estimation results, 
feeders with complicated branching conditions should have a linear data storage 
structure to facilitate calculations. In Figure 1-42, an example is given to illustrate this 
linearization process. 
 

 
 
Figure 1-42 Feeder Data Storage Structure for LFEA 
 
With the storage sequence suggested by Figure 1-42, line and load information could 
be saved in different categories as defined in Table 1-3. However, in order to extend 
LFEA to accommodate varied feeder structures, additional topology information are 
needed for calculation, which can be seen from Table 1-8 (Index as the index of LNL 
element in main section or a sub-section; Layer as feeder-layer of sub-section; Ref 
as an arbitrary reference name given to each sub-section; SpNd refers to Splitting 
Node in the preceding layer). 
 
Index 1 1 1 1 2 2 3 2 3 4 
Layer 0 1 2 3 2 1 1 0 0 0 
Ref 0 1 1-1 1-1-1 1-1 1 1 0 0 0 
SpNd 0 1 1 1 1 1 1 0 0 0 
 
Table 1-8 Linearized Topology Information of a Feeder 
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With current LFEA extension, only Index, Layer and Ref information are crucial for 
specifying branch structure in the process of power or voltage calculation, as they 
can serve as the guideline of how unknown network variables are obtained from input 
data with a linear algorithm. 
 

2.4.3 Extended Power and Voltage Estimation Approaches 
 
Similar to the methodologies introduced in section 2.3.2, both power estimation and 
voltage estimation processes could be modified to include branching information by 
classification of nodes (main / branch section, power junction / voltage retracing point 
etc.). However, the branching algorithms introduced in section 2.3.2 are not capable 
of dealing with either multiple branch layers or branches with a common splitting 
node. Consequently, more complicated approaches are needed to extend existing 
method to more general structures of a radial feeder. In order to achieve this goal, 
more than one dimension of node categorization will be necessary, namely: 
 

1) Firstly, all nodes should be differentiated by whether or not it is the common 
point of two or even more (branched) sections, if it is shared by multiple 
sections (criterion A1), then the node will be defined as Power Junction Point 
in backward sweep and Voltage Splitting Point in forward sweep; 

2) Secondly, all nodes should be categorized according to its position in the 
section it belongs to: if it is the first node in a branched section after a Power 
Junction / Voltage Splitting Point in the previous layer (criterion B1), then it 
will be defined as Power Summary Point in backward sweep and Voltage 
Following Point in forward sweep; if it is the first node in the same layer as a 
Power Junction / Voltage Splitting Point after one or more branched section(s) 
(criterion B2), it will be defined as Voltage Retracing Point in forward sweep; 

3) If none of the conditions described above is satisfied, the examined node is 
just a normal node for which standard LFEA procedure should be applied. 

 
Notably, a feeder node could hold properties from both category 1) and category 2) 
listed above, or none of them as described in category 3). Consequently, although 
only three criteria (A1, B1, B2) are given for identifying peculiar nodes, actual node 
types could be more as combinations from these two listed categories are formed. In 
order to contain such probabilities, node type could be described by a two-digit tag 
for both power and voltage estimation procedures, which is shown in Figure 2-43 

 

A1 Layer(i) = Layer(i+1) - 1 

B1 Index(i) = 1 & Layer(i) ≠ 0 

B2 Layer(i) = Layer(i-1) - 1 

N None 

Criterion \ Condition 

B1 

Power Tag 

A1 N  

N 

11 

10 

1 

0 

B1 

Voltage Tag 

A1 N  

B2 

11 

12 

1 

2 

N 10 0 

Figure 1-43 Power and Voltage Tags under Different Scenarios 
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In order to better illustrate how power tags and voltage tags are defined in an actual 
network, Figure 1-44 and Figure 1-45 are provided to exhibit naming conventions 
with a sample branched feeder. Physical meanings for different tag values are also 
listed for reference. 
 
 

 
 
Figure 1-44 Nodal Power Tags of a Sample Feeder during Backward Sweep 
 
 

 
 
Figure 1-45 Nodal Voltage Tags of a Sample Feeder during Forward Sweep 
 
Obviously, since real-life distribution feeders could have multiple layers of branches 
(such as the feeder shown in Figure 1-44 and Figure 1-45), a single dimension of 
power accumulation or voltage degradation is not sufficient for calculation. Therefore 
temporary variables such as active power accumulator AcP used in power or voltage 
estimation procedures should be extended in dimension according to the deepest 
layer of branch in a given feeder. 
 
The extended power and voltage estimation procedures are described in Figure 1-46 
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Figure 1-46 Extended Power and Voltage Estimation Steps Including Tag Information 
 
 

2.5 Summary 
 
In this chapter, a load flow estimation algorithm (LFEA) modified from the backward / 
forward sweep method [47] is introduced in full detail. Step-by-step explanation of the 
algorithm is given from the simplest radial topology to the test distribution network 
taken from real life, while basic principles as well as realization details of each step 
are both covered with full strength. By the end of the chapter, error analyses are 
performed for both the standard calculation procedure and the load curve extension 
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of LFEA, after which further explanation of how LFEA can be adapted from an ad-hoc 
solution to a more generally applicable approach is covered in various aspects. 
 
The advantages of LFEA, in retrospect, appear in two main aspects: firstly, linear 
(except for EMP estimation) real-number calculations can be used in stead of large 
matrix computations with complex numbers (as in the case of the mostly used 
Newton-Raphson load flow calculation practices), which can make a big difference 
for extremely time-consuming load curve calculations; secondly, the per-LNL-element 
processing order of LFEA makes it relatively easy to evaluate the impact of DG or 
active network control units under the given framework, thus some basic estimation 
formulas of LFEA will also serve directly or indirectly as the theoretical basis of 
ensuing topics on DER allocation. 
 
But on the other hand, there are also disadvantages of LFEA: firstly, LFEA is, after 
all, essentially an estimation approach, thus no matter how many error-reducing 
measures it takes, there is no way to eliminate the presence of errors; secondly, 
LFEA is designed to suit the relatively simple topologies (featured by radial, meshed, 
branched, and simple hybrid feeders) of distribution grids, thus comparatively 
complicated inter-meshing scenarios (such as some coupling possibilities shown in 
Figure 1-15 or the sample grid structures from Figure 1-41) will inevitably prove too 
complicated to be realized by LFEA; finally, only symmetrical network conditions are 
considered in current LFEA, unbalanced load or generation among 3 phases are not 
dealt with in the given algorithm (however, possibilities of extending the current 
module to include this aspect should exist [50]). 
 
Therefore, it is important to evaluate the specific applicability of LFEA before applying 
it to a certain network for a given purpose; and presumably, further improvements on 
the algorithm could be expected that would help to yield better estimation accuracies 
or accommodate more complicated network topologies. Within the scope of this 
report, however, the currently used LFEA module already suffices the purpose of DG 
evaluation and thus will be used for this purpose in ensuing chapters. 
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Chapter 2 A Load Flow Algorithm Based on Node-to-
Link Deduction 

Executive Summary 

A novel load flow calculation algorithm has been proposed in this chapter with 
the following features: 
• Iterative power-voltage correction with good efficiency and convergence 

behavior. 

• Real-number matrix operations based on standard sparse techniques. 

• Capable of producing good estimation results after 1 or 2 iterations. 

• Calculation accuracy level equals or even excels Newton-Raphson method. 

• Linear/quadratic formulation of network states from nodal power 
injection/extraction. 

• Easy extension to optimal power flow and probabilistic power flow problems. 

Currently the following functionalities are proven to be applicable in this 
chapter but not implemented yet on programming level: 

• Currently all loads are implemented as power-constant, while current-constant or 
impedance-constant loads should be easily adaptable without further complexity. 

• Currently only PQ generator models are programmed, while PV operation mode 
can be modeled with a slightly higher computational complexity. 

• Implemented algorithm currently assumes one slack node, while multiple slacks 
can be realized at the cost of a slightly higher computational complexity. 

• Active control (OLTC or switchable capacitor banks) measures have not been 
modeled so far, but should be potentially implementable. 

• The algorithm has been implemented for balanced three-phase power systems, 
while computational complexity will increase greatly under unbalanced 
conditions. 

The algorithm is found to be inherently restricted in the following aspects: 

• Computational complexity increases with the number of network connections 
(i.e. degree of meshing) and the number of slack and PV nodes. 

• Convergence rate is found to be close to backward/forward sweep method, 
which means much more iterations are needed under extreme voltage 
conditions. 

In comparison with existing main-stream approaches (Newton-Raphson, 
current iteration etc.), the new load flow algorithm provides a simpler, more 
robust, and potentially faster solution that could provide explicit insights into 
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network characteristics. It is extremely suitable for sensitivity analysis, optimal 
/ probabilistic power flow problems, and simulation of complex distribution 
networks with a high amount of dispersed generators. 
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Review of Existing Load Flow Methods 
Currently, the majority of commercial and educational power system software utilizes 
the Newton-Raphson method [1] [2] [3] for solving load flow problems. The popularity 
of this approach is mainly based on its high execution efficiency and good 
applicability to varied network structures and different component models. Although 
ranking among the earliest approaches [2] developed for solving load flow, the 
Newton-Raphson method has been consistently improved over the years, thus up to 
today it still holds significant advantages over other known approaches as the most 
mature load flow algorithm. 
In comparison with other classical load flow solutions such as Gauss-Seidel and Fast 
Decoupled Power Flow, Newton-Raphson method stands out with faster 
convergence speed (compared to Gauss-Seidel) and/or better applicability and 
accuracy (compared to Fast Decoupled Power Flow) [54]. The main restrictions of 
Newton-Raphson method, however, lie in its poor handling of ill-conditioned networks 
[61] and heavy reliance on a good guess of initial system condition [62] (which can 
be partially mitigated by using a number of Gauss-Seidel iterations for voltage 
initiation [54]). In addition, under specific conditions the Newton-Raphson method 
might be disfavored due to performance or speed concerns—for example, for 
contingency calculations of large transmission networks with low R/X ratio, the Fast 
Decoupled Power Flow converges much faster than Newton-Raphson method, while 
accuracy differences can be largely ignored. 
In recent decades, a large number of novel alternatives for solving the load flow 
problem have been proposed by different authors—such as direct (non-iterative) 
solutions in [55] and [56], pattern recognition method in [57], genetic algorithm 
approach in [58], fuzzy logic variant in [59], and conic quadratic formulation in [60]. In 
general these proposals all serve as refreshing ideas on an academic level, but 
almost all of them suffer from one or more of the following two problems: (1) general 
applicability, especially to large networks with complicated topology and multiple 
active components; (2) execution efficiency, specifically in comparison with Newton-
Raphson or other commercial-level packages. Consequently, most of these new 
ideas are still at Lab-testing stage of application. 
Aside from the heavily-theoretical non-Newton approaches described above, there is 
also another important line of practice-oriented load flow solution techniques 
developed specifically for distribution networks [61] [62] [63] [47] [49]. This category 
of load flow algorithm is generally named as backward / forward sweep method, 
which utilizes the radial or weakly-meshed topological feature of distribution networks 
to reduce dimension of calculations. First proposed in [61], this method was adapted 
from current-iteration to power-iteration in [62], revised with better loop handling in 
[63], and added with more active component models in [47] and [49]. The major 
drawback with backward / forward method, however, comes from the adoption of 
loop breakpoints—this operation limits the algorithm to ad hoc category and makes it 
only applicable to simple topologies. 
The load flow algorithm proposed in this chapter shares similar power-voltage 
correction concepts as the backward-forward sweep method, yet it surpasses the 
later in terms of general applicability to highly-meshed networks with multiple active 
components. 
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Terminal-to-Difference Equations for Serial Components  

Reintroduction of Equivalent π Model 
A central part of load flow analysis is the modeling of network components, especially 
serial components that will largely determine the node admittance matrix used as 
basis of most calculation algorithms. In Figure 2-1 and Figure 2-2, the π-models of a 
typical transmission line and a typical power transformer are respectively plotted. It 
can be seen that the transmission line can be modeled as a pure π element, while 
the transformer model includes an extra voltage turns ratio between primary and 
secondary sides. 

 

 
Figure 2-1 π-Model for Transmission Lines  

 

 
Figure 2-2 π-Model for Power Transformers  

By considering only the π element part of transformer model in Figure 2-2, both lines 
and transformers (partial) can be described by a same π model shown by Figure 2-3. 
Obviously, the same serial resistance and reactance models apply to both cases. 
However, lines are found with zero shunt conductance (Gq) and capacitive shunt 
susceptance (Bq < 0); while transformers has positive values for both Gq and Bq. 

 
Figure 2-3 Equivalent π-Model for Serial Components 
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In Equation 2-1, four important variables are defined as the centerpiece of load flow 
calculation for a serial network component: active power difference (dP), reactive 
power difference (dQ), voltage magnitude difference (dU), and voltage angle 
difference (dα). It should be specifically noted that the power differences (dP and dQ) 
consist of both serial (dPl and dQl) and shunt (Pq and Qq) flows, but summation of 
power flow instead of current flow reduces computational complexity as it replaces 
vector algebra by scalar algebra when active and reactive power flows are calculated 
separately. 
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Equation 2-1 
It should be noted that definitions of active and reactive power differences in 
Equation 2-1 applies to both lines and transformers, while voltage magnitude and 
voltage angle differences obtained from Equation 2-1 have not included the impacts 
of transformer turns ratio and tap position (if applicable). Consequently, the voltage 
magnitude/angle differences in Equation 2-1 refer to the differences between 
transformer secondary side (Uo, αo) and an equivalent primary side (Ui2, αi2), for 
which nodal voltage magnitude and angle values both have to be deducted from the 
actual primary side condition (Ui, αi). In Equation 2-2, formulas of this deduction are 
given, which exhibit linear correlations between nodal voltage values at primary and 
equivalent primary sides when a certain tap position has been chosen. Another 
noticeable fact in Equation 2-2 is that series resistance and reactance values will also 
depend on actual tap position. 
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Formulation of Voltage Magnitude and Angle Differences 

Two popular estimation formulas have been used by many power system engineers 
as an intuitive approximation of line/transformer voltage drop and phase angle 
difference. In Equation 2-3 these two formulas are shown in their standard format 
[44].  

2,
U

QRPXd
U

QXPRdU ⋅−⋅
≅

⋅+⋅
≅ α  

Equation 2-3 
In this section, however, the approximated formulas in Equation 2-3 will be redefined 
under the equivalent π-model shown by Figure 2-2 and thereby extended to eliminate 
their inherent errors. Eventually this makes it possible to calculate differences in both 
voltage magnitude and voltage angle across a line or transformer through knowledge 
of terminal power (both active and reactive) and voltage states. Apparently, such a 
possibility serves as the first step to iterative power-voltage modification method for 
solving the load flow problem. 

In Figure 2-4, a vector diagram is taken from [66] (page 117) to illustrate inter-
dependencies between input and output voltage magnitudes and angles. Apparently 
in Figure 2-4, the output voltage (Uo) has been taken as the reference vector, against 
which voltage difference has been mirrored in parallel or perpendicular directions.  

 
Figure 2-4 Vector Diagram for Input and Output Voltages of an Equivalent π-Model 

By exploring geometric features of the right-angled triangular in Figure 2-4, Equation 
2-4 (referred also to [66]) can be obtained when the vector correlations are examined 
with output voltage as reference vector (αo). 
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Equation 2-4 
 
Up to now, Figure 2-4 and Equation 2-4 do not show any difference from [66]. 
However, a simple change of reference frame from Uo to Ui will lead to a completely 
new diagram and a new set of equations, as shown by Figure 2-5 and Equation 2-5. 
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Figure 2-5 Vector Diagram for Input and Output Voltages of an Equivalent π-Model 
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Equation 2-5 
By exploring triangular features of both Equation 2-4  and Equation 2-5, two formulas 
<1> and <2> can be obtained to induce voltage difference from terminal voltage and 
power values, which can be seen from Equation 2-6.  
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Equation 2-6 

 
However, voltage difference equation in Equation 2-6 contains a potential error term 
EdU; thus in Equation 2-7 the value of EdU is examined and proved to be always 
constant as zero. Consequently, the voltage estimation formula in Equation 2-3 is 
eventually turned into an accurate expression in similar form, as shown by Equation 
2-7. 
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Equation 2-7 

Now that the voltage (magnitude) difference estimation formula in Equation 2-3 has 
been extended to an accurate version, a similar procedure can be performed for 
estimation formula of voltage angle variation. In Equation 2-8, voltage angle 
difference is deduced from right-angle triangular features of both Figure 2-4 and 
Figure 2-5, and then eventually transformed into an accurate version with similar 
form as Equation 2-3. 
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Equation 2-8 

One noticeable fact concerning Equation 2-7 and Equation 2-8 is that all power terms 
are intermediate values (Pl1 Pl2 Ql1 Ql2) instead of terminal values (Pi Po Qi Qo). In 
Equation 2-9, transformation of these intermediate values into terminal ones has 
been performed. Obviously, the difference comes from shunt conductance and 
susceptance. 

( )
( )⎪⎩

⎪
⎨
⎧

⋅−⋅++=++−=+

⋅−⋅++=++−=+

⋅=⋅=⋅=⋅=

1
2

2
2

2121

1
2

2
2

2121

2
2

22
2

21
2

11
2

1

)()()(

)()()(

,,,,

qiqooiqoqill

qiqooiqoqill

qoqqoqqiqqiq

BUBUQQQQQQQQ

GUGUPPPPPPPP
As

BUQGUPBUQGUP

 

Equation 2-9 
By applying Equation 2-9 to Equation 2-7, calculation formula for voltage magnitude 
difference can be expressed in terms of terminal power and terminal voltage values, 
which is illustrated by Equation 2-10. 
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Equation 2-10 
Similarly, Equation 2-9 can be applied to Equation 2-7 to deduce calculation formula 
for voltage angle difference expressed in terms of terminal power and terminal 
voltage values, which is illustrated by Equation 2-11. 

( ) ( )

( )

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅−⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅+

⋅⋅
+⋅−+⋅

=

⋅−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅+

⋅⋅
+⋅−+⋅

=

⎥
⎦

⎤
⎢
⎣

⎡
⋅−⋅⋅

⋅
−⋅−⋅⋅

⋅
+

⋅⋅
+⋅−+⋅

=

⋅⋅
+⋅−+⋅

=

−
qlql

o

i

i

o

oi

oiloil

qlql
o

i

i

o

oi

oiloil

qlql
o

i
qlql

i

o

oi

oiloil

oi

llllll

BRGX
U
U

U
U

UU
QQRPPXd

BRGX
U
U

U
U

UU
QQRPPX

BRGX
U

UBRGX
U

U
UU

QQRPPX

UU
QQRPPXd

2
1

2
)()(sin

2
1

2
)()(

222
)()(

2
)()()sin(

1

1122

2121

α

α

 
Equation 2-11 

One noticeable feature of Equation 2-10 is that right-hand data—specifically, input 
and output voltages (Ui, Uo)—simultaneously decide the voltage difference and are 
decided by the voltage difference. This discovery introduces the possibility of an 
iterative solution to the load flow problem. However, it is obvious that iterative 
deduction of terminal-to-difference voltages only provides one aspect of this potential 
solution, as both active and reactive power flows have to be determined to ensure an 
accurate yield from Equation 2-10. In the following section Chapter 0, this issue will 
be addressed in consequence. 
Examination of Equation 2-11 suggests that no inter-dependencies exist between 
left-hand and right-hand side values. Thus theoretically Equation 2-11 is not a 
prerequisite for iterative load flow solution. However, later in this chapter Equation 
2-11 will be needed for arriving at an accurate solution for meshed systems. 
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Formulation of Active and Reactive Power Differences 
In Equation 2-1, power differences are defined as summation of serial and shunt 
flows, and definitions are already given for shunt power flow. In Equation 2-12, serial 
power flows are revealed to be dependent on serial current, which is in turn 
expressed in terms of terminal power and voltage values.  
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Equation 2-12 

In Equation 2-13, serial active and reactive power flows are derived from Equation 
2-12. 
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Equation 2-13 
Total active and reactive power difference formulas are summarized in Equation 
2-14. 
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Equation 2-14 
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Formula Consistency Check for Line-to-Line System 
It should be noted that all formulations in this chapter so far are based on line-to-
neutral system values, thus it is a question whether the voltage magnitude/angle 
formulas in Equation 2-10 / Equation 2-11 and active/reactive power formulas in 
Equation 2-14 will need modification when applied to the line-to-line system. Since in 
balanced three-phase networks line-to-line values are de facto used for load flow 
calculation, consistency check is performed in this section for all obtained 
conclusions. 

In Equation 2-15, the calculation of voltage magnitude difference is extended to line-
to-line system based on Equation 2-10. It can be seen that exactly the same formula 
can be applied to line-to-line system without any need of modification. 
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Equation 2-15 

In Equation 2-16, the line-to-neutral formula from Equation 2-11 is extended to the 
line-to-line system, again the same formulation holds true for both cases. 
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Equation 2-16 

Finally, in Equation 2-17 and Equation 2-18, active power difference and reactive 
power difference equations are respectively extended to line-to-line case based on 
Equation 2-14. As can be expected, the same formulas apply nonetheless. 
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Equation 2-17 
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Equation 2-18 

 
Consequently, deductions in this section have proved that the same terminal-to-
difference formulas can be applied to both line-to-neutral and line-to-line systems, 
which can be explained by the adoption of power-voltage description of system state 
instead of current-voltage description—the 3  multiplier is eliminated in the 
transition from current- to power-related terms. 
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Summary of All Terminal-to-Difference Formulas 
Now that four terminal-to-difference formulas have been respectively obtained for dU, 
dα, dP and dQ and examined in section Chapter 0 for their applicability to line-to-line 
system, they are confirmed to be readily usable for an iterative solution of the load 
flow problem. In Equation 2-19, these four formulas are summarized and expressed 
in a simple vector form indicating input (terminal) and output (difference) variables.  
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Equation 2-19 
The vector formula in Equation 2-19 clearly indicates that terminal voltage and 
terminal active and reactive power values can be used to deduce differences in 
voltage and active/reactive power across a line or transformer. And conversely, when 
variables at incoming side of the line/transformer are known, the out-going variables 
can be updated with the knowledge of difference values. Thus these two procedures 
can be combined into a loop to solve the load flow problem with single line / 
transformer configuration (2-node problem). However, in a more complicated network 
Equation 2-19 has to be used in combination with topology information, which will be 
detailed in section Chapter 0. 

In the simple case of zero shunt power flow, terminal-to-difference formulas in 
Equation 2-19 can be simplified, as shown by Equation 2-20. It should be noted that 
Equation 2-20 can also be applied to series capacitors or inductors. 
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Modeling of Network Topology Information  

Modeling of Link-to-Node Correlation Matrix 

Firstly, topology of an electrical network can be described by two types of graphical 
elements: nodes and links (equivalent to edges in geometry). Node elements 
naturally refers to busbars, cable joints, and representative substations; while link 
elements can be defined as any electrical device that interconnects nodes to each 
other—thus transmission lines, power transformers, series capacitors and series 
reactors can all be classified into this category. However, it should be noted that a 
link element is always assumed to have two terminals, thus three-winding 
transformers have to be modeled as three equivalent two-winding equivalent 
transformers joint at an artificial central node. 

With the knowledge of terminal-to-difference formulas from Equation 2-19, iterative 
load flow calculation can be performed once terminal power and voltage values of 
series components (i.e. links) are known. For initiation of calculation, terminal 
voltages can be assumed as rated values, while terminal active/reactive power flow 
in link elements are not directly available and have to be deducted from nodal power 
extraction or injection. In order to simplify initial node power definition, both loads and 
generators examined in this section (Chapter 0) are assumed to be constant PQ 
types, while further variants will be covered in the ensuing section Chapter 0. 

In reality, however, direct deduction of link power from nodal power is only possible 
for radial networks [62], as meshes will inevitably interfere with the power 
accumulation routes found in tree-like topologies. In contrast, a link-to-node power 
deduction process that successively centers on each node in a network can be 
performed disregarding network topology and features wider applicability than the 
node-to-link procedure. In Figure 2-6, such a link-to-node deduction process is 
exemplified with a single node element, from which a power balance equation is 
obtained based on Kirchhoff’s Law.  

NB = Node Before N
NA = Node After N
SBo = Outgoing Power in a Link to NB
SAi = Incoming Power in a Link to NA
Sgen = Total Generator Injection to a Node
Sload = Total Power Extraction from a Node
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Figure 2-6 Formulation of Power Balance Equation for a Node Element 
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Observation of the power balance equation in Figure 2-6 reveals that output power 
flows are taken from incoming links, while input power flows are used for outgoing 
links. When a number of nodes are considered as a whole, usage of both input and 
output power flows in one link will cause unnecessary confusion and non-uniform 
definition of ‘link power’. Therefore, in Equation 2-21 the nodal power balance 
equation is modified to contain only input power flow or only output power flow for a 
specific link. In practice both formulations will lead to the same calculation result, thus 
the input power flow denotation will be used hereafter to specifically represent ‘link’ 
power flow. 
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Equation 2-21 

Now Equation 2-21 has provided a basic template for link-to-node deduction: on the 
left side of balance equation incoming link powers are multiplied by +1 while outgoing 
link powers are multiplier by -1, and on the right side of the equation net nodal power 
extraction (load minus generation) is added on top of power losses in incoming links 
(using input power flow denotation). In order to explore applications of these rules to 
more general conditions, a radial test network is given in Figure 2-7 as an example. 

 

Figure 2-7 Sample Radial Network with Node-Link Labeling 
When compared to Figure 2-6, Figure 2-7 has obviously omitted all nodal elements 
such as loads and generators to simplify layout. However, power flow direction as a 
crucial graphical property is also missing in Figure 2-7. By assuming slack to be the 
only power source, link directions can be easily obtained for the radial grid, as shown 
by Figure 2-8. 

 

Figure 2-8 Sample Radial Network with Flow Direction Labeling 
A simple count of node elements and link elements in Figure 2-8 points both 
numbers to 8. Apparent this contradicts with the graphical property of radial grids—
node number should always be equal to one plus link number. However, further 
examination of link L1 reveals it to be an artificial line that only has an ending node 
(N1), which explains why node count is equal to link count. This extra line is 
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purposefully added so as to obtain slack injection together with other link power 
results. Obviously, this artificial line is assumed to be ideal and thus incurs no power 
losses at all. 
By applying the link-to-node deduction process from Figure 2-6 to all graphical 
elements in Figure 2-8, a summarized link-to-node correlation matrix (T) can be 
defined as shown by Equation 2-22. Apparently for radial grids, introduction of 
artificial slack link brings node count and link count equal, thus the link-to-node 
correlation matrix (T) becomes a non-singular square matrix. Consequently, the link 
power vector SL can be obtained from the product of inversed T and the node power 
vector SN—it should be noted, however, that the equation can also be solved without 
inverting T, as standard linear solver (e.g. LU decomposition) can be directly applied 
with a higher computational efficiency. The advantage of obtaining explicit inverse of 
T, however, lies in the fact that the inversion process only need to be executed once 
in iterative load flow solution process, as no elements in T will be updated throughout 
the iterations. 
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Equation 2-22 

One noticeable feature of link-to-node correlation matrix (T) is that it can be applied 
to both complex apparent powers as a whole and real-number active / reactive 
powers separately. In Equation 2-23, this property is utilized to create combined 
power vectors on node (xN) and link (xL) levels, while an evolution matrix M is 
defined in the process. For radial networks, using M instead of T is not meaningful 
due to a doubled matrix dimension—however, for meshed grids the introduction of M 
will become indispensible. 
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Equation 2-23 
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Modeling of Meshing Equilibrium Equations 

In the previous section (Chapter 0), the concept of link-to-node correlation matrix T 
has been introduced and proved to be directly usable for deducing link power from 
node power in radial networks. In order to explore the applicability of T to meshed 
networks, a sample meshed network is created by adding two extra coupling lines to 
the radial grid in Figure 2-7, which in its original form can seen from Figure 2-9. 

 

Figure 2-9 Sample Meshed Network with Node-Link Labeling 
There is a problem with the old naming scheme, however, when extra couplings are 
added. Since the original naming sequence of nodes and links conform to an 
increasing order as the element is found to be located further away from slack, the 
new coupling lines will inevitably bring some comparatively remote nodes closer to 
the slack (such as N6 in Figure 2-9). In order to retain naming conformity (which will 
prove to be very important for the voltage deduction process later), the nodes and 
links in the new meshed grid are renamed in Figure 2-10 together with new labeling 
of flow directions. 
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Figure 2-10 Reordered Sample Meshed Network with Flow Direction Labeling 
One noticeable feature of Figure 2-10 is that two individual loops are identified, which 
can be respectively described as L2-L4-L5-L3 (Loop 1) and L4-L5-L7-L9-L8-L6 (Loop 
2). Although it is still possible to identify a third loop L3-L7-L9-L8-L6-L2 by combing 
Loop 1 and Loop 2 together, this new loop, when expressed in vector form, is not 
linearly independent from Loop 1 and Loop 2 and thus can be seen as redundant 
information. 
By expressing each identified loop in vector form (default flow direction is translated 
as algebraic sign of +/-), a minimum set of loops can be identified for each meshed 
network and their total count should be equal to the difference between link number 
and node number. For each loop, Kirchhoff’s voltage law can be applied for voltage 
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magnitude and voltage angle, which is described by Equation 2-24. A loop index 
matrix (L) is defined in this process, which is the summary of all eigenvectors from 
the minimum loop set.  
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Equation 2-24 
By applying the conclusions of Equation 2-19 to Equation 2-24, a total of 2·Nmh 
(Nmh as number of loops) meshing equilibrium equations can be obtained in 
Equation 2-25. It can be seen that linearization of voltage angle difference (dα) 
equation will inevitably induce error from the inversed sine function, which, however, 
can be iteratively mitigated by approximating the error item (Edα) from previously 
calculated dα results. 
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Equation 2-25 
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In the mean time, the addition of two extra coupling lines in Figure 2-10 changes the 
original balance between link count and node count suggested by Equation 2-22. In 
Equation 2-26, the link-to-node correlation matrix T is redefined for the meshed 
network and it can be obviously seen that T is no longer a square matrix and cannot 
be directly used for deducing link power from node power. In order to transfer the 
complex expression of apparent power into separate real terms of active and reactive 
power, a decoupled correlation matrix TD is derived from T in Equation 2-26. 
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Equation 2-26 

Now that Equation 2-25 and Equation 2-26 respectively represents 2·Nmh and 2·Nnd 
equilibrium conditions, a total of 2·Nlk (as total link count equals total node count plus 
total loop count) linear equations can be obtained for corresponding 2·Nlk unknown 
variables (considering both active and reactive powers separately). Consequently the 
link power flows are again solvable as a standard real-number linear space problem, 
as can be seen from Equation 2-27. Obviously, the evolution matrix M is redefined 
with additional meshing information in comparison with Equation 2-27.  
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Equation 2-27 

Additionally, it should be noted that parallel lines and transformers can be either 
combined into one equivalent element or modeled as small loops each consisting of 
two elements only. 
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Nodal Voltage Deduction Process 
Through the node-to-link deduction process introduced in sections Chapter 0 and 
Chapter 0, initial terminal power flow conditions can be obtained for the terminal-to-
difference equations shown in Equation 2-19. Consequently, differences in active / 
reactive power as well as voltage magnitude / angle can be obtained from Equation 
2-19. Obviously, the power differences can be immediately applied to terminal 
variables for iterative correction, but the voltage differences are not directly 
applicable to terminal (nodal) voltage variables due to a lack of global consideration. 
Therefore, a voltage deduction procedure needs to be performed to update nodal 
voltages when new voltage differences are obtained. 
In order to deduce nodal voltages from voltage differences, two approaches have 
been found to be applicable—a successive method and a least squares method. 
Both will be covered in this section using voltage magnitude as an example (voltage 
angles can be deduced in similar patterns). 
1. The Successive Method 
As already shown by Figure 2-10, a general incremental naming scheme has been 
adopted for nodes and links in the meshed grid. This serves as the basis for effective 
classification of network nodes into different layers. In Figure 2-11, the same network 
from Figure 2-10 is redrawn with labeled node layers. It can be seen that nodes in 
each layer are interconnected to nodes in preceding or ensuing layers by single or 
multiple links. Specifically, nodes with multiple preceding links are defined as 
coupling nodes and are highlighted with a different color in Figure 2-11. 

 
Figure 2-11 Layering and Definition of Coupling Nodes for Successive Method 

The successive method deduces nodal voltages from accumulated voltage rises or 
drops in link elements from layer to layer, which starts from the slack node (layer 1) 
to nodes in the most remote layer (layer 5 in Figure 2-11). For each node, the vector 
diagram in Figure 2-6 applies again for voltage calculation, as shown by Equation 
2-28. 
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Equation 2-28 

Special care is required for coupling nodes, for which nodal voltage is taken as the 
average of deduced end-terminal voltages from multiple preceding links. The majority 
of nodes, however, only has one preceding link in Figure 2-11, thus their voltages 
can be arbitrarily determined from such single sources. 
2. The Least Squares Method 
In comparison with the idea of deducing nodal voltages from link voltage differences, 
an operation in the reversed direction is much easier to implement: in Equation 2-29, 
a node-to-difference voltage deduction matrix VD is defined for the meshed grid 
shown by Figure 2-10 and Figure 2-11. Voltage terms of slack node and artificial 
slack link are taken out from the equations, which leaves VD size to be Nlk-1 by Nnd-
1.  
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Equation 2-29 
For radial grids, VD is a non-singular square matrix that can be directly inversed to 
obtain nodal voltages from link voltage difference values. For meshed grids, 
however, the matrix contains redundant information so that no unique solution exists 
for the linear system. Use of least squares method, however, could theoretically lead 
to minimum deduction error in general, as shown by Equation 2-30. 
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Equation 2-30 
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Now that working principles of both successive and least squares methods 
are given, a general performance comparison can be drawn between them 
using the meshed grid in Figure 2-11 as an example.  
Firstly, by summarizing individual nodal analysis steps from the successive method 
into one collective difference-to-link voltage deduction matrix, Equation 2-31 can be 
obtained to describe the eventual correlation between nodal voltages and voltage 
differences. Obviously, all elements in the matrix are negative, which means the flow 
directions depicted by arrows in Figure 2-11 are always kept under the successive 
method. In addition, nodes that are neither coupling nodes nor nodes located after 
coupling nodes can always be expressed by simple summation of voltage differences 
in preceding links (row elements to be either -1 or 0), while the other nodes feature 
more diverse values for corresponding row elements (such as -0.5). 
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Equation 2-31 

A similar matrix is obtained in Equation 2-32 for the least squares method by simply 
applying VD definition from Equation 2-29 to Equation 2-30. Comparison of this new 
matrix to the one obtained in Equation 2-31 shows that not all elements in the new 
matrix are negative (which means reversed flows are considered), and more non-
zero row elements are defined for nodes that are neither coupling nodes nor nodes 
located after coupling nodes. Although potentially capable of accelerating 
convergence speed, the least squares method is undoubtedly more computationally 
demanding than the successive method considering the additional efforts needed for 
matrix inversion. 
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Equation 2-32 
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Modeling Extension to More General Conditions 

Modeling of Multiple Slacks 

For load flow calculations of transmission networks, it is quite often that multiple slack 
nodes need to be modeled to represent different network boundaries. Obviously the 
introduction of multiple slacks to a network will completely undermine the single-slack 
assumption used throughout section Chapter 0, thus new models are needed to 
accommodate such changes. In Figure 2-12, two additional slacks are added to the 
original radial network shown by Figure 2-7, so that a test network is created to 
examine this problem. 

 

Figure 2-12 Sample Test Network with Multiple Slacks 
For each slack, a set point for voltage magnitude (U) and a set point for voltage angle 
(α) are respectively given, thus all the slacks can be seen as mutually correlated to 
each other by the differences in their set points. By arbitrarily choosing one slack 
node as total injection point, the remaining slacks can be replaced by artificial 
lossless lines that stems from the total injection point with fixed rise or drop values in 
voltage magnitude (dUS) and voltage angle (dαS). In Figure 2-12, this procedure is 
illustrated by the replacement of L9 and L10 through L9_Uα and L10_Uα 
respectively. In this way, additional complexities of two additional slacks are 
transformed into two artificial loops (L2-L3-L5-L7-L9_Uα and L2-L4-L6-L8-L10_Uα), 
whose meshing equilibrium equations are given in Equation 2-33. In addition, a slack 
count variable Nsl is defined in Equation 2-33, which corresponds to the number of 
slacks except the one at total injection point. 
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Since the voltage equilibrium equations in Equation 2-33 are similar to the ones used 
for normal loops in Equation 2-25 except for the adoption of dUS and dαS instead of 
zero on right-hand side, the separate formulas in Equation 2-33 can be consequently 
re-ordered and expressed in standard form, as shown by Equation 2-34. 
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Equation 2-34 

Equation 2-34 suggests that a total of 2·Nsl slack equilibrium equations can be 
obtained after the addition of Nsl extra slacks—i.e., the increase of 2·Nsl unknown 
active and reactive artificial link power flows in the solution space is accompanied by 
the same number of additional linear equations, thus the multi-slack system remains 
solvable and still has only one unique solution. Calculated power flows in the artificial 
links correspond directly to power extractions from the additional slacks, but actual 
output from the slack at total injection point should be calculated as the difference 
between total slack injection and the sum of remaining slack outputs. 

Modeling of PV Nodes 
Power system generators are known to be operated under two basic modes: PQ and 
PV. Models so far are only applicable to the PQ case, thus in this section PV 
generator models are examined using Figure 2-13 as an example. 

 
Figure 2-13 Sample Test Network with PQ Nodes 

A PV generator is characterized by an active power set point and a voltage 
magnitude set point, thus it can be seen as a mixture of slack and (negative) load. 
Due to the absence of reactive power set point, a PV generator cannot be modeled 
as a normal (PQ) node element; while the missing voltage angle set point also makes 
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it impossible to replace a PV generator completely by an artificial link. Consequently, 
in Figure 2-13 the PV generators are plotted as half-node, half-link elements—the 
node part represents constant P injection with zero Q output, while the link part 
contains only reactive power flow and physical constraint from the voltage magnitude 
set point.  
When observed under the linear system model, half-node part of a PV generator 
does no impose any further computational complexities, while the half-link part 
increases the amount of unknown reactive link power values by the total number of 
PV generators—which is exactly half of the dimension increase brought about by the 
same number of additional slacks (as explained in section Chapter 0). Consequently, 
the total number of link variables for active power will be smaller than the number of 
variables for reactive power when PV generators are connected to a grid. The impact 
of this difference on the dimension of link-to-node correlation matrix is illustrated by 
Equation 2-35.  
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Equation 2-35 

 
From Equation 2-35, it can be seen that the link-to-node correlation matrix for active 
power is scaled down and therefore different from the one used for reactive power. 
Thus both decoupled correlation matrix TD and link power vector xL are re-
dimensioned as a consequence. In Equation 2-36, the virtual loops created by 
addition of half-links for PV generators are utilized to obtain PV equilibrium equations 
(total number equals PV generator count) that can be used for solving the linear 
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system problem. Similar to the multi-slack case, subtractions are needed to obtain 
reactive power output from the slack. 
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Equation 2-36 

Construction of Extended Evolution Matrix 

 
Figure 2-14 Sample Test Network with Meshes, Multi-Slacks and PV Generators 

Now that the impacts of additional slacks and PV generators are explored in sections 
Chapter 0 and Chapter 0, the definition of evolution matrix provided in Equation 2-27 
can be extended to accommodate corresponding updates. By adding the additional 
slacks from Figure 2-12 and extra PV generators from Figure 2-13 to the meshed test 
grid shown in Figure 2-10, a combined test network with all complexities considered 
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so far can be obtained, as shown by Figure 2-14. In order to solve the load flow of 
such a complex system, all equilibrium equations obtained from Equation 2-27, 
Equation 2-34, and Equation 2-36 have to be combined to produce an evolution 
matrix M that is square and non-singular. In Equation 2-37, this procedure is 
illustrated in detail. 
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Equation 2-37 

It should be noted that the link count variable Nlk in Equation 2-37 relates to the total 
number of both real links representing lines and transformers and artificial links that 
are manually created for modeling of additional slacks or PV generators. A noticeable 
feature of M resides in the fact that the TD part of it remains constant over all 
iterations while the LS, SS, and VS parts need to be updated each time when new 
power and voltage values are obtained. Proper utilization of this feature could 
potentially improve algorithm efficiency to a considerable extent (especially for grids 
with simple topologies). 

Consideration of Current-Constant and Impedance-Constant Loads 

In Figure 1-15, power demand variations of 
power-constant, current-constant, and 
impedance-constant loads are plotted 
against varying nodal voltage conditions. 
Obviously, the later two load types will have 
higher power initiation errors when grid 
voltage conditions are bad. Although 
eventually the errors can be eliminated via 
iterations, convergence speed will suffer and 
first-guess results are far less accurate than 
those of power-constant (PQ type) loads. 

Power-Voltage Curves of Power-Constant, Current-Constant, 
and Impedance-Constant Loads

0%

50%

100%

150%

200%

250%

50% 75% 100% 125% 150%

U_actual / U_rating

S_
ac

tu
al

 / 
S_

ra
tin

g

S_Const
I_Const
Z_Const

Figure 2-15 Load Type Comparison 



 77

Load Flow Calculation via Power-Voltage Iteration  

Layout of the Iterative Procedure 

In previous sections of this chapter, three major calculation procedures have been 
described in detail: (1) terminal-to-difference equations (summarized in Chapter 0), 
(2) linear system formulation based on evolution matrix (latest model given in 
Chapter 0), and (3) nodal voltage deduction process (described in Chapter 0). With 
the knowledge of all these three modules, an iterative load flow algorithm can be 
conceived, as shown by Figure 2-16. 

 

Figure 2-16 Flowchart of the Iterative Load Flow Solution Procedure 
Obviously, the iterative load flow solution steps in Figure 2-16 can be classified into 
three types according to line colors: initialization steps, outer loop steps, and inner 
loop steps. Their respectively functionalities are listed as follows: 

1. Initialization Steps: 

 The major aim of initialization is to provide viable starting values for nodal 
(terminal) voltages and power losses in lines and transformers. Unlike Newton-
Raphson method, the selection of initial voltage and loss values will not significantly 
influence convergence behavior to the point of causing potential calculation failures, 
as the iterative algorithm itself is robust enough to offset initial errors. Therefore, for 
normal applications zero loss and rated voltage settings are already sufficient 
assumptions for the initialization task. There are situations, however, when network 
states are known to be contained within certain ranges (such as contingency 
calculation for a highly meshed transmission network), from which a typical operating 
point can be chosen and used for initialization process. The main advantage of this 
type of ‘forecasted’ initialization lies in the fact that very close estimation results can 
be directly expected after 1 or 2 iterations. 

2. Outer Loop Steps: 

 The outer loop is essentially an iterative procedure of solving the node-to-link 
deduction problem via linear system representation in the form of evolution matrix M. 
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As already pointed out in section Chapter 0, the linear system can be solved without 
explicitly inverting M, which makes it possible to apply standard sparse linear solvers 
to the real-number problem. For each iteration step, the linear system equations are 
first solved to obtain a new list of terminal power values in link elements; then an 
inner loop procedure is executed to update both difference and terminal variables, 
which in turn serve as the input data for the linear system representation of the 
ensuing iteration. In Figure 2-16, the functionalities of the inner loop within the outer 
loop are represented by dotted lines. 

3. Inner Loop Steps 

 The inner loop serves two main purposes: (1) determination of incoming, 
outgoing, and lost active / reactive powers in all link elements, (2) update of nodal 
voltage values according to new voltage difference results. These two aims are 
achieved by an iterative calling of terminal-to-difference equations and the nodal 
voltage deduction process. The reason of using a looped procedure instead of a 
straightforward one is the inter-coupling between power and voltage variables, which 
can be seen from Figure 1-9.   

 
Figure 2-17 Interactions between Power and Voltage Data 
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Accuracy and Convergence Evaluation of the NtL Algorithm 

In this section, the performance of proposed node-to-link (NtL) deduction algorithm is 
compared to three main-stream methods implemented in the software PSS®SINCAL: 
Newton-Raphson (NR), current iteration (CI), and admittance matrix (AM).  
Generally, three criteria can be applied for evaluating an algorithm: speed, 
convergence, and accuracy. Due to divergence of platforms, speed comparison in 
terms of CPU time has to be omitted in this section. Convergence analysis, on the 
other hand, will be only performed for the NtL method due to limited data availability 
of PSS®SINCAL. Detailed accuracy comparison, however, will be provided in the 
form of relative and/or absolute errors in nodal voltage magnitudes and angles plus 
active and reactive link powers.  
In order to examine algorithm robustness, a light-loaded grid with 2% voltage 
variation and a heavy-loaded grid with 20% voltage variation are respectively tested. 
In Figure 2-18, the light-loaded grid with 15-bus configuration is shown as single-line 
diagram. Convergence and accuracy analysis results for this light-loaded grid are 
respectively shown in ensuing Figure 2-19 and Figure 2-20. 
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Figure 2-18 Fifteen-Bus Test Grid with 2% Voltage Variation 
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Voltage Magnitude Error Development, 15-Bus Grid
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Figure 2-19 NtL Convergence Behavior under 15-Bus Test Grid 
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Figure 2-20 NtL Relative Errors Compared to Existing Methods under 15-Bus Test 

Grid 
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In Figure 2-19, the convergence rate of NtL method is represented by the 
development of iterative calculation errors of voltage magnitude, voltage angle, active 
link power, and reactive link power. The errors are defined as the absolute values of 
differences between concurrent and finalized (converged) results. Despite individual 
differences among nodes and links, Figure 2-19 exhibit a linear trend of error 
reduction (inferior to the quadratic trend of NR, as illustrated by [67]) under 
logarithmic scale, which means calculation errors of NtL method decrease 
exponentially over iterations. For the light-loaded grid, a total of 8 iterations are 
already sufficient for bringing all examined error terms 10-10 times smaller, which 
means error reduction capability of each iteration can be seen as more than 10 times 
in general. 
Figure 2-20, on the other hand, lists the relative errors of NtL method when 
compared to existing algorithms. The error terms are defined as absolute values of 
the differences between calculation results from NtL and a designated algorithm (i.e. 
NR, CI, or AM). It can be clearly seen that for the light-loaded grid, NtL result is found 
to be closest to NR result with relative errors between them falling below 10-10 in 
general. Since Newton-Raphson has been generally acknowledged to be the best-
performing algorithm for networks in good condition, the NtL method can be seen as 
capable of offering a close accuracy level to NR for networks under good voltage 
conditions.  
Now that evaluation of NtL method for the light-loaded 15-bus test grid is done, a 
more critical test network is presented in Figure 2-21. In order to ensure convergence 
of all examine algorithms within finite steps, the meshed grid in Figure 2-21 is 
designed to have the simplest 3-bus topology. Loading levels on bus N2 and N3, 
however, are increased to extreme conditions so that expected voltage levels of 
these two nodes will be around 80% of the rated value.  
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Figure 2-21 Three-Bus Test Grid with 20% Voltage Variation 

Similar to the 15-bus case, in Figure 2-22 and Figure 2-23 NtL convergence behavior 
and relative error data are respectively plotted. 
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Voltage Manitude Error Development, 3-Bus Grid
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Figure 2-22 NtL Convergence Behavior under 3-Bus Test Grid 
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Figure 2-23 NtL Relative Errors Compared to Existing Methods under 3-Bus Test 

Grid 
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Examination of Figure 2-22 reveals similar linear trends under logarithmic scale as 
those of Figure 2-19. However, the 3-bus grid needs a much higher number of 
iterations for bringing down step-wise errors to an acceptable level. In comparison 
with light-loaded case, the new heavily-loaded grid needs 4 to 5 iterations on average 
to achieve a 10 times reduction in calculation errors. This means voltage 
deterioration from 98%-102% to 80%-120% makes algorithm convergence speed 4 
to 5 times slower in consequence. 
The relative error bars shown in Figure 2-23 suggests NtL performance to be closest 
to the CI method under extreme voltage conditions. This affinity, however, not does 
mean NtL and CI share the same accuracy level for the 3-bus test grid as their 
relative errors are still considerably large (esp. reactive link power). In addition, it is 
unclear whether or not CI presents more accurate results than NR and AM. 
Therefore, relative errors between NtL and the other existing approaches are no 
longer sufficient indices for accuracy evaluation, and new criteria are needed. 
With the knowledge of calculated load flow results of a certain algorithm, actual 
accuracy of the algorithm can be evaluated on two levels: node-level and link-level. 
The node-level evaluation can be performed according to Kirchhoff’s law, which 
summarizes all power injections and extractions at a certain node and this sum 
(supposed to be zero) serves as actual power error of the algorithm on this certain 
node. The link-level evaluation, however, first calculates dU and dα values from 
Equation 2-19 and then compares them to their counterparts directly obtained from 
the algorithm. In Figure 2-24, evaluation results under both criteria are provided 
respectively for NtL, Nr, CI, and AM. 
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Figure 2-24 Actual Error Levels of Examined Algorithms under 3-Bus Test Grid 

Figure 2-24 indicates that under extreme voltage conditions, both CI and AM 
sacrifices the accuracy of link voltage differences to minimize nodal power flow 
errors; while NR attempts to maintain voltage difference accuracy at the cost of 
potential power imbalance at meshed nodes. Thus NtL stands out as the only 
algorithm that could achieve both aims within a sensible accuracy level, which is a 
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proof of its superiority over existing commercial packages in terms of accurate 
handling of ill-conditioned grids. 

NtL Execution Efficiency Compared to Newton-Raphson Method 

As already stated at the beginning of section Chapter 0, CPU time of the NtL method 
has not been compared to Newton-Raphson or other existing approaches due to 
differences in utilized software platforms. A general evaluation of NtL computational 
complexity, however, is possible via direct comparison to the layout of Newton-
Raphson method.  
Specifically, dimensions of evolution (M) and Jacobian (J) matrices can be both 
expressed in terms of network element counts, as shown by Equation 2-38. 
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Equation 2-38 

Since both M and J are real, square, and non-singular, Equation 2-38 clearly 
indicates the potential sizes of linear systems to be solved under NtL and NR 
methods. For radial grids with one slack and purely PQ loads, the NtL method can 
directly utilize link-to-node correlation matrix to solve decoupled active and reactive 
power flows and thus provides a much simpler formulation than NR method. For 
more complicated grids with loops, extra slacks, and/or PV generators, the size of M 
will become undoubtedly larger than J—each loop or PV node will increase their 
dimensional difference by 2 (equivalent to an additional PQ node in NR), while each 
extra slack will increase the difference by 4.  

The larger size of M (comparison with J) apparently places NtL at an unfavorable 
position when dealing with meshed grids with multiple active components. However, 
there are two features of M that could potentially offset its size disadvantage, namely: 
(1) the sparsity of M is generally greater than J, (2) each matrix M consists of a 
constant part (TD) that stays unchanged over iterations and a variable part (LS, SS, 
and VS) that needs to be iteratively updated. Proper utilization of these two features 
could greatly reduce computational efforts needed for solving the linear system 
equations presented by Equation 2-37. In order to illustrate the basic working 
principles behind this idea, a partitioned LU decomposition procedure can be 
introduced to tackle the M formulation. 

Now consider a standard LU decomposition procedure without pivoting table 
operation on M, which should convert M into a lower triangular matrix L and an upper 
triangular matrix U such that M = L × U. In order to facilitate illustration, a four-node 
grid in Figure 2-25 with one loop, one slack, and one PV node is taken as an 
example. 
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Figure 2-25 Four-Node Test Grid for Illustration of Partitioned LU Decomposition for 

M 
According to Equation 2-37, modeling dimension of M for the four-node grid in Figure 
2-25 is 13, out of which 8 rows have constant values and 5 rows will vary over 
iterations. In Figure 2-25, the rows in M are rearranged to the order of P-α-Q-U, such 
that the first 6 rows (equal to unknown active link power count) include both link-to-
node correlation matrix for active power and equilibrium equations for voltage 
magnitude, while the last 7 rows (equal to unknown reactive link power count) include 
both link-to-node correlation matrix for reactive power and equilibrium equations for 
voltage angle. 

 
Figure 2-26 Re-ordered M Expression for Four-Node Test Grid 

The purpose of rearrangement of M can be explained by Figure 2-27, in which M, L, 
and U can all be partitioned into four regions (namely A, B, C, and D). Specifically, 
region A and region C of L and U are solely dependent on their counterparts in M and 
thus only need to be solved for once. Cell values in region B and region D of L and U, 
however, will be dependent on multiple regions from M and also vary over iterations. 

 
Figure 2-27 Partitioned LU Decomposition Procedure of M for Four-Node Test Grid 

By introducing an intermediate vector zL to the equation yL = M × xL, this linear 
system formulation can be transformed into two sub-problems after LU 
decomposition, namely: (1) yL = L × zL, (2) zL = U × xL. In order to explore the 
applicability of partition theory (i.e., splitting the linear system into constant and 
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varying equations), these two sub-problems are examined respectively in Figure 2-28 
and Figure 2-29.  
In Figure 2-28, solution to the lower-triangle linear system is splitted into four steps 
that correspond respectively to the four partitioned regions in Figure 2-27. It can be 
seen that step 1 and step 2 can be solved individually with fixed linear expressions 
(i.e. no need to update matrix cell values over iterations), while step 3 and step 4 are 
dependent on outputs from previous steps and need updated linear formulations for 
new iterations. 

 
Figure 2-28 Partitioned Solution of the Lower Triangular Matrix for Four-Node Test 

Grid 
A similar four-step representation for the upper-triangular problem can be found from 
Figure 2-29 with higher inter-dependencies among the individual steps. However, the 
same partition theory still applies: step 2 and step 4 have constant linear 
expressions, while matrix formulations for step 1 and step 3 vary over iterations.  
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Figure 2-29 Partitioned Solution of the Upper Triangular Matrix for Four-Node Test 

Grid 
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Simplified Optimal Power Flow Using NtL Formulation 

Linear / Quadratic Formulation of Network State Variables 

With the introduction of linear system formulation of node-to-link deduction problem 
via evolution matrix M, it is possible to explicitly inverse M to express active and 
reactive link power flows in terms of nodal power injection / extraction vector xL, 
which can be seen from Equation 2-39. It should be noted that this operation can be 
performed in every iteration step of a load flow procedure with increasing coefficient 
accuracy over time, although only the results obtained from the initial condition can 
be seen as a direct linear formulation of the node-to-link deduction problem. 
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Equation 2-39 
The linearized formulation of Equation 2-39 provides an opportunity of expressing 
varied network state variables in terms of individual load sizes and/or generator 
output levels, which can be extremely useful for contingency calculation, sensitivity 
analysis, and optimal / probabilistic load flow applications. In scope of this section, 
three types of network variables are mainly examined: total system active power loss, 
nodal voltage magnitudes, and link (line / transformer) element loading levels. Firstly, 
in Equation 2-40 the quadratic formulation of total active power loss is given in terms 
of node powers. 
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Equation 2-40 

 
Similarly, in Equation 2-41 the nodal voltages are expressed as linearly dependent 
on node power injections/extractions.  
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Equation 2-41 

Finally, handling of device loading level is somehow tricky: in Equation 2-42 the 
relative loading of a device is decoupled into an active power part (Irat_P) and a 
reactive power part (Irat_Q), both revealed to be linearly deducible from net node 
powers. The loading level itself, however, is neither linear nor quadratic in correlation 
to nodal power vector. 
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Equation 2-42 
 

Optimal Power Flow Using NtL and Quadratic Programming 
Methods 

The optimal power flow (OPF) problem has been traditionally focused on dispatch of 
large central power plants (mostly thermal generators) in transmission networks, 
which can be described as the process of minimizing a target cost while keeping grid 
performance within a prescribed limit.  
Controlled variables used for input of OPF problem are normally active and reactive 
power outputs from PQ generators, voltage set points of PV generators, transformer 
tap positions, angle settings of phase-shifting transformers, and on/off states of 
switchable shunt capacitors [68] [69] [71]. While grid voltages and line currents [68] 
are generally chosen as optimization constraints, the objective function could be the 
cost of generation and/or network losses—the generation cost is directly associated 
with generator active power outputs, while network loss cost is normally optimized via 
manipulation of reactive power outputs from generators. Thus the majority of OPF 
methods opt to decouple the problem into a sequential P-dispatch and a Q-dispatch 
problem [68] [69] [70]. 
Existing solution techniques [75] [76] of the OPF problem mainly include non-linear 
programming, successive quadratic or linear programming [71] [74], Newton-based 
approaches, interior point methods [73] [77], or their combinations. The majority of 
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these solutions are based on gradient approximation techniques that iteratively 
moves solution point towards optimality via manipulation of Taylor expansion [71] 
[72] or Kuhn-Tucker condition [77] of the traditional non-linear load flow equations. In 
this case, selection of initial solution point and step length will significantly influence 
convergence and stability of the algorithm. With the direct linear / quadratic 
formulations of networks variables given in section Chapter 77, however, the OPF 
problem can be solved directly in standard QP format [78] without any need of 
gradient modeling. 
In order to facilitate illustration, the control variables of OPF formulation will be 
simplified as nodal active (PN) and reactive (QN) power injections—which in effect 
assumes all nodes in a network to be connected solely to PQ generators. This is of 
course an extreme scenario that will unlikely happen in reality, but it models the OPF 
problem to its highest complexity and can be easily downgraded to suit actual 
network configurations.  
In Equation 2-43, the linear / quadratic formulations of power loss, nodal voltage, and 
link loadings are summarized in both compact and decoupled forms. Unlike 
traditional gradient techniques, the network state equations in Equation 2-43 allow 
both single-step optimization for P and Q (using compact form) as well as decoupled 
P- and Q-dispatches (using decoupled form) in two consecutive steps. 
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Equation 2-43 

Firstly, the single-step QP formulation of OPF problem can be found from Equation 
2-44, in which objective function is taken as the sum of generation and loss costs, 
while constraints include voltage, loading, and generator capacity settings. In actual 
networks, the number of voltage and loading constraints will stay the same while 
fewer generator capacity limits will be posed as not all nodes will have generator 
connections. 
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Equation 2-44 

Noticeably, in Equation 2-44 the thermal loading constraints are not linear 
expressions and thus do not fit into standard QP definition. Consequently, they have 
to be converted into linear equivalents using multiple inequality formulations 
illustrated by Equation 2-29. Obviously, usage of more inequations will lead to higher 
accuracy but lower efficiency. 
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Figure 2-30 Linearization of Thermal Loading Constraints 
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Due to doubled state space size (P and Q) and extra dimensional increases caused 
by linearization of thermal constraints, the single-step QP formulation of OPF 
problem could lead to extremely high storage and computational burdens. Thus 
decoupled P- and Q-dispatch procedures will have their application also with NtL 
load flow formulation.  
In Equation 2-45, the decoupled P-dispatch procedure is illustrated using the linear / 
quadratic formulations from Equation 2-43. Noticeably, both optimistic and 
pessimistic modes are suggested: the pessimistic mode ensures strict fulfillment of 
all constraints and is thus recommended for week grids, while the optimistic mode 
could secure the lowest possible cost for objective function and is ideal for relatively 
stable networks. In practice, both modes are used assuming a certain security 
margin on reactive power outputs from generators so as to leave sufficient room for 
Q-dispatch manipulations. 
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Equation 2-45 

In Equation 2-46, the QP formulation of ensuing Q-dispatch is given. It appears in 
similar format as the P-dispatch procedure from Equation 2-45, with the only 
difference that contributions from active power in all constraint terms are known 
beforehand and thus no uncertainties exist anymore. 
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Open Topics and Potential Extensions 

The following list of topics is currently open and need to be reckoned upon: 
1. In comparison with NR, The NtL method uses a larger but sparser (and can be 

partitioned) evolution matrix instead of Jacobian matrix, but the factorization 
process is much simpler using NtL. Whether this change leads to higher or lower 
efficiency is unknown unless actual computation times are compared. 

2. Convergence behavior of NtL method shows linear trend under logarithmic 
scale, which is similar to Gauss, backward/forward sweep and fast decoupled 
methods but obviously inferior to the quadratic convergence rate of Newton-
Raphson [67], thus any modification that can speed up NtL convergence will be 
a critical improvement. 

3. Modeling of active control measures such as OLTC and switchable capacitor 
banks are currently missing, but implementation should be possible via remedial 
(iterative modification) or precognitive (set control aim beforehand) techniques. 
Node-based control variables should be generally easier to implement than link-
based ones. 

4. As the terminal-to-difference equations have been proven to be applicable to 
both line-to-neutral and line-to-line systems, the NtL algorithm is potentially 
extensible to unbalanced load flow problems. However, it is arguable if M 
dimension should be enlarged by 3 times to accommodate individual phases or 
the same size of M can be used for each phase with decoupled line-to-neutral 
link power solutions. 
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